为保证气垫船在特殊情况的应用,对气垫船空投入水进行研究。应用Abaqus有限元分析软件对气垫船气囊建立空气弹簧模型,对气囊不同气压时气垫船入水过程的运动特性和姿态变化进行仿真分析。结果表明:气囊的运动因空气弹簧存在的原因较底板更为剧烈;气囊气压在0.2~0.3 MPa间的运动特性几乎一致,小于0.2 MPa时气囊的弹性势能较小,速度衰减较慢,入水后吃水更深;气囊气压在0.15~0.3 MPa内,气垫船入水的姿态由前倾变为后倾,气压为0.2 MPa时,气垫船入水全程的姿态变化不大。总的来说,气垫船气囊压力为0.2 MPa时入水运动特性较好,姿态始末变化不大。
In order to ensure the application of hovercraft in special cases, the study on air water injection of hovercraft is carried out. By using abaqus finite element analysis software to build an air spring model for the air bag of hovercraft, the motion characteristics and attitude changes of the air bag during the water entry process are simulated and analyzed. The results show that: The movement of the air bag is more intense than that of the bottom plate because of the existence of the air spring. The motion characteristics of the airbag pressure are almost the same between 0.2?0.3MPa. When the air pressure of the air bag is less than 0.2MPa, the elastic potential energy of the air bag is smaller, the velocity attenuation is slower, and the draft after entering the water is deeper. When the air pressure of the air bag is within 0.15?0.3MPa, the attitude of the hovercraft entering the water changes from forward to backward. When the air pressure is 0.2MPa, the attitude of the hovercraft entering the water has little change. In general, when the air bag pressure of hovercraft is 0.2MPa, the motion characteristics of entering water is better, and the attitude changes little.
2024,46(5): 34-38 收稿日期:2023-03-07
DOI:10.3404/j.issn.1672-7649.2024.05.006
分类号:U674.943
基金项目:江苏省工业与信息化厅2021年度“关键核心技术(装备)研制公关”资助项目
作者简介:陈海斌(1968-),男,正高级工程师,研究方向为船舶与海洋工程装备结构物设计与制造
参考文献:
[1] 南栩, 洪亮, 刘新月. 基于STAR-CCM+的空投气垫船静水阻力特性研究[J]. 舰船科学技术, 2022, 44(8): 45-49.
NAN Xu. Research on hydrostatic resistance of drop hovercraft based on STAR-CCM + [J] Ship Science and Technology. 2022, 44(8): 45-49.
[2] 张傲. 气垫船砰击载荷预报方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[3] 赵昶旭, 杜震霆, 蒋文涛, 等. 输液袋在跌落冲击载荷下的力学性能研究[J]. 生物医学工程研究, 2021, 40(3): 300-305+323.
ZHAO Changxu, DU Zhenting, JIANG Wentao, et al. Research on mechanical properties of infusion bag under drop impact load[J]. Journal of Biomedical Engineering Research, 2021, 40(3): 300-305+323.
[4] 李法林, 周海亮, 姜媛媛, 等. 基于ABAQUS的飞机空投救援装备舱体着陆仿真研究[J]. 医疗卫生装备, 2020, 41(11): 6-11.
LI Falin, ZHOU Hailiang, JIANG Yuanyuan, et al. ABAQUS-based emulation research on landing of rescue equipment dropping from aircraft[J]. Chinese Medical Equipment Journal, 2020, 41(11): 6-11.
[5] 杨彬. 轮胎在空投着陆过程的三维有限元分析[D]. 沈阳: 东北大学, 2019.
[6] WANG J T, JOHNSON A R. Deployment simulation of ultra-lightweight inflatable structures [J]. AIAA-2002-1261.
[7] 刘志波. 气囊式火星着陆器着陆缓冲过程仿真分析与试验验证[D]. 长沙: 湖南大学, 2014.
[8] 徐圣杰, 张宗科, 张海鹏, 等. 气垫船运动特性及其非线性因素研究进展[J]. 船舶力学, 2020, 24(5): 670-680.
XU Sheng Jie, ZHANG Zong-ke, ZHANG Hai-peng, et al. Progress in research of the dynamics of an air cushion vehicle and its nonlinear influence factors[J]. Journal of Ship Mechanics, 2020, 24(5): 670-680.
[9] 徐伟. 全垫升式气垫船总振动计算方法研究[D]. 大连: 大连理工大学, 2018.
[10] 谭偲龙. 基于ABAOUS的空气弹簧非线性刚度特性的有限元研究[D]. 上海: 海南大学, 2019.
[11] 杨冬冬, 熊伟, 度红望. 气动应变能蓄能器充放气动态特性仿真与实验分析[J]. 液压与气动, 2021, 45(4): 110-115.
YANG Dongdong, XIONG Wei, DU Hongwang. Simulation and experimental analysis on charging/discharging dynamic characteristics of a pneumatic strain energy storage device[J]. Chinese Hydraulics & Pneumatics, 2021, 45(4): 110-115.