研究流噪声与航速关系可以有效地解决高航速水下航行器流噪声预报的难题。基于Lighthill声类比理论,研究缩尺比为1∶24的SUBOFF模型在特定航速范围内的声源特性,得到了流噪声频域结果与航速关系,给出了不同航速下基于斯特劳哈尔数和航速关系的流噪声频谱换算方法。研究结果表明,随着航速的提高,SUBOFF声指向性形状基本不变,低频范围内声辐射具有偶极子特性,辐射声功率的大小与航速的6次方成正比。在同一流场模型下,基于偶极子换算关系下的高航速原型预报值和大涡模拟计算值总声功率级和总声源级误差分别为1.2 dB和2.3 dB。
Studying the relationship between flow-induced noise and speed can effectively solve the difficult problem of predicting flow-induced noise of high-speed underwater vehicles. Sound source characteristics of the 1:24 SUBOFF model in the specific speed range were studied based on the Lighthill's acoustic analogy theory, the relationship between the frequency domain results of its flow-induced noise and the speed were obtained, and the frequency conversion method of flow noise based on the relationship between Strouhal number and speed at different speeds are given. The results show that the shape of SUBOFF sound field directivity is basically unchanged with the increase of speed, the sound radiation in the low frequency range has dipole characteristics, and the radiated sound power is proportional to the sixth power of the speed. Under the same flow field model, the errors of the total sound power level and the total sound source level of the high speed prototype prediction value and the large eddy simulation(LES) calculation value based on the dipole conversion relationship are 1.2 dB and 2.3 dB, respectively.
2024,46(5): 52-58 收稿日期:2023-02-15
DOI:10.3404/j.issn.1672-7649.2024.05.010
分类号:U666.7
作者简介:张咏鸥(1989-),男,博士,副教授,研究方向为流体力学、流声耦合预报方法、湍流与噪声控制技术
参考文献:
[1] 俞孟萨, 吴有生, 庞业珍. 国外舰船水动力噪声研究进展概述[J]. 船舶力学, 2007, 11(1): 7. 152-158.
YU M S, WU Y S, PANG Y Z. A review of progress for hydrodynamic noise of ships[J]. Journal of Ship Mechanics, 2007, 11(1): 7. 152-158.
[2] 李福新, 石秀华, 张宇文, 等. 回转体流噪声相似律的实验研究[J]. 流体力学实验与测量, 1999, 13(4): 14-18.
LI F X, SHI X H, ZHANG Y W, et al. Experimental study of flow noise scaling of an axisymmetric body[J]. Journal of Experiments in Fluid Mechanics, 1999, 13(4): 14-18.
[3] 张小锋, 刘国庆, 赵成, 等. 声类比水下圆柱绕流声学特性研究[J]. 舰船科学技术, 2019, 41(11): 120-124+128.
ZHANG X F, LIU G Q, ZHAO C, et al. Research on acoustic properties of flow around underwater cylinders based on acoustic analogue[J]. Ship Science and Technology, 2019, 41(11): 120-124+128.
[4] 李玲, 刘沛清, 邢宇, 等. 亚临界雷诺数圆柱绕流远场气动噪声实验研究[J]. 北京航空航天大学学报, 2016, 42(5): 977-983.
LI L, LIU P Q, XING Y, et al. Far-field aeroacoustic experimental study of flow around a circular cylinder at subcritical Reynolds number[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5): 977-983.
[5] 邢宇, 刘沛清, 郭昊, 等. 简化起落架噪声相似准则及马赫数比例律[J]. 航空学报, 2017, 38(6): 72-79.
XING Y, LIU P Q, GUO H, et al. Similarity rule and Mach number scaling law for simplified landing gear noise[J]. Acta Aeronautica ET Astronautica Sinica, 2017, 38(6): 72-79.
[6] 王春旭, 吴崇建, 陈乐佳, 等. 流致噪声机理及预报方法研究综述[J]. 中国舰船研究, 2016, 11(1): 57-71.
WANG C X, WU C J, CHEN L J, et al. A comprehensive review on the mechanism of flow-induced noise and related prediction methods[J]. Chinese Journal of Ship Research, 2016, 11(1): 57-71.
[7] 卢云涛, 张怀新, 潘徐杰. 全附体潜艇的流场和流噪声的数值模拟[J]. 振动与冲击, 2008, 27(9): 142-146+189.
LU Y T, ZHAN H X, PAN X J. Numerical simulation of flow-field and flow-noise of a fully appendage submarine[J]. Journal of Vibration and Shock, 2008, 27(9): 142-146+189.
[8] 王曦晖, 黄桥高, 潘光. 围壳形状对潜艇水动力噪声影响数值研究[J]. 中国造船, 2020, 61(S2): 262-272.
WANG X H, HUANG Q G, PAN G. Numerical research on influence of fairwater shape on flow-induced noise of submarine[J]. Shipbuilding of China, 2020, 61(S2): 262-272.
[9] 张楠, 吕世金, 沈泓萃, 等. 潜艇围壳线型优化抑制脉动压力与流激噪声的数值模拟研究[J]. 船舶力学, 2014, 18(4): 448-458.
ZHANG N, LV S J, SHENG H C, et al. Numerical simulation on the effect of fairwater optimization to suppress the wall pressure fluctuations and flow induced noise[J]. Journal of Ship Mechanics, 2014, 18(4): 448-458.
[10] YAO H, ZHANG H, LIU H, et al. Numerical study of flow-excited noise of a submarine with full appendages considering fluid structure interaction using the boundary element method[J]. Engineering Analysis with Boundary Elements, 2017, 77: 1-9.
[11] CHEN L, MACGILLIVRAY I. Characteristics of sound radiation by turbulent flow over a hydrofoil and a bare-hull SUBOFF[C]//Australian Acoustical Society Conference, Australia: Gold Coast, 2011: 105.
[12] LIGHTHILL M J. On sound generated aerodynamically I: generaltheory[C]//ProcRoySoc, London: RoySoc, 1952: 211A-1107: 564-587.
[13] CURLE N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1955, 231(1187): 505-514.
[14] 汤渭霖, 俞孟萨, 王斌, 等. 水动力噪声理论[M]. 北京: 科学出版社, 2019.
[15] LIU H L, HUANG T T. Summary of DARPA SUBOFF experimental program data[R]. Naval Surface Warfare Center Carderock Div Bethesda MD Hydromechanics Directorate, 1998.
[16] 高顺凯, 蒋奉兼, 张志国, 等. 基于LES的潜艇绕流特性分析研究[C]//第二十五届全国水动力学研讨会暨第十二届全国水动力学学术会议文集(上册), 2013: 438-443.
GAO S K, JIANG F J, ZHANG Z G, et al. Analyze the flow field of a submarine using LES method[C]//The 12th China Hydrodynamics Academic Conference, 2013: 438-443.
[17] 张咏鸥, 张涛, 刘继明, 等. 基于Lighthill声类比的流激噪声三维计算及验证[J]. 舰船科学技术, 2014, 36(9): 55-59+64.
ZHANG Y O, ZHANG TAO, LIU J M, et al. Three dimensional simulation and validation of the flow-induced noise based on lighthill's acoustic analogy theory[J]. Ship Science and Technology, 2014, 36(9): 55-59+64.
[18] 傅慧萍, 缪国平. 大涡模拟在噪声计算中的应用[J]. 上海交通大学学报, 2009, 43(8): 1307-1311+1316.
FU H P, MIU G P. Application of LES Method to flow noise calculation[J]. Journal of Shanghai Jiao tong University, 2009, 43(8): 1307-1311+1316.
[19] 蔡建程, 潘杰, 鄂世举, 等. 圆柱绕流气动声的偶极子及四极子源法定量研究[J]. 声学学报, 2016, 41(3): 420-427.
CAI J C, PAN J, E S J, et al. Quantitative study of the aerodynamic sound induced by the flow past a cylinder based on dipole and quadrupole models[J]. Acta Acustica, 2016, 41(3): 420-427.
[20] 江文成, 张怀新, 孟堃宇. 基于边界元理论求解水下潜艇流噪声的研究[J]. 水动力学研究与进展A辑, 2013, 28(4): 453-459.
JIANG W C, ZHANG H X, MENG K Y. Research on the flow noise of underwater submarine based on boundary element method[J]. Chinese Journal of Hydrodynamics, 2013, 28(4): 453-459.
[21] 曾文德, 王永生, 杨琼方. 全附体潜艇流噪声数值计算[J]. 兵工学报, 2010, 31(9): 1204-1208.
ZENG W D, WANG Y S, YANG Q F. Numerical calculation of flow noise of submarine with full appendages[J]. Acta Armamentarii, 2010, 31(9): 1204-1208.
[22] 王超, 郑小龙, 张立新, 等. 用LES和无限元耦合方法预报潜艇流噪声[J]. 噪声与振动控制, 2015, 35(1): 1-6.
WANG C, ZHENG X L, ZHANG L X, et al. Prediction of submarine noise based on les and infinite element method[J]. Noise and Vibration Control, 2015, 35(1): 1-6.
[23] AHLBORN B, SETO M L, NOACK B R. On drag, Strouhal number and vortex-street structure[J]. Fluid Dynamics Research, 2002, 30(6): 379.
[24] 孙睿智, 吴方良, 许建. 雷诺数对潜艇粘压阻力和尾部伴流场影响的数值计算研究[J]. 船海工程, 2008(5): 1-5.
SUN R Z, WU F L, XU J. Numerical analysis of the effects of reynolds number on the resistance and wake field of the submarine[J]. Ship & Ocean Engineering, 2008(5): 1-5.