海洋核能平台2~3年需要拖航至港口进行换料,在其设计的初始阶段对平台拖航阻力的研究至关重要。考虑2种海洋核能平台概念,分析环形月池对平台拖航阻力的影响。采用STAR-CCM+软件对分离式海洋核能平台和一体式海洋核能平台在不同拖航速度时的拖航阻力进行计算。结果表明,随着拖航速度的增大,拖航阻力增加明显;月池的存在使平台周围流场趋于紊乱,导致核能平台拖航阻力增加;对月池增阻机理的分析可为核能平台的设计提供参考。
The offshore nuclear power platform needs to be towed to the port for refueling every two to three years, so it is very important to study the towing resistance of the offshore nuclear power platform at the initial stage of its design. Considering two concepts of offshore nuclear power platform, the influence of annular lunar pool on the towing resistance of the platform was studied. The towing resistance of separate offshore nuclear power platform and integrated offshore nuclear power platform at different towing speeds is calculated by using STAR-CCM+ software. The results show that the towing resistance increases obviously with the increase of towing speed. The presence of lunar pool makes the flow field around the platform tend to be disturbed, which leads to the increase of towing resistance of the nuclear platform. The analysis of the lunar pool drag increase mechanism can provide reference for the design of nuclear power platform.
2024,46(5): 59-64 收稿日期:2023-02-23
DOI:10.3404/j.issn.1672-7649.2024.05.011
分类号:U661.1
基金项目:中央高校基本科研业务费资助项目(DUT2019TD35);国家自然科学基金项目(51779042)
作者简介:许建龙(1984-),男,高级工程师,研究方向为船舶设计
参考文献:
[1] 李振福, 李婉莹, 蔡梅江. “冰上丝绸之路”航线开发利用系统建设研究[J]. 海岸工程, 2019, 38(2): 144-153.
[2] 蔡梅江. “冰上丝绸之路”开启北半球运输物流体系新格局[J]. 中国远洋海运, 2019(7): 60-61+11.
[3] 刘大辉, Ove T G, 白勇, 等. 极地冰区海上钻井平台发展趋势研究[J]. 水利科学与寒区工程, 2019, 2(1): 66-73.
[4] 李想. 分离式冰区核电平台连接机构研究[C]//中国造船工程学会船舶力学学术委员会. 2019年船舶结构力学学术会议论文集. 中国造船工程学会船舶力学学术委员会: 中国造船工程学会, 2019: 542-548.
[5] 李想, 李红霞, 李志远, 等. 分离式冰区核电平台连接机构研究[C]//2019年船舶结构力学学术会议, 2019。
[6] ORR R S, DOTSON C. Offshore nuclear power plants.[J]. Nuclear Engineering and Design, 1973, 25(3): 334-349.
[7] 孙雷, 罗贤成, 姜胜超, 等. 适用于渤海海域浮式核电平台水动力特性研究基础与展望[J]. 装备环境工程, 2018, 15(4): 19-27.
[8] 刘怀梅. 俄建造海上浮动核电站[J]. 中国核工业. 2013(7): 9.
[9] LEE K, KIM M, LEE J I, et al. Recent advances in ocean nuclear power plants[J]. Energies, 2015, 8(10): 11470-11492.
[10] ZHANG Y, BUONGIORNO J, GOLAY M, et al. Safety Analysis of a 300-MW(electric) Offshore Floating Nuclear Power Plant in Marine Environment[J]. Nuclear Technology, 2018, 203(2): 129-145.
[11] 李红霞, 王莹, 黄一, 等. 冰区浮式核电平台定位系统优化设计[J]. 哈尔滨工程大学学报, 2021, 42(2): 193-199.
[12] FUKUDA K. Behavior of water in vertical well with bottom opening of ship, and its effect on ship motions[J]. Journal of the Society of Naval Architects of Japan, 1977, 141: 107-122.
[13] FALTINSEN O. M. Sea loads on ships and offshore structures [M]. Cambridge University Press, Cambridge, United Kingdom, 1990.
[14] JIANG S C, CONG P W, SUN L, et al. Numerical investigation of edge configurations on piston-modal resonance in a moonpool induced by heaving excitations [J]. Journal of Hydrodynamics, 2019, 31(4): 682-699.
[15] YADAV A, ANANTHA SUBRAMANIAN V, ANANTHAKRISHNAN P. Numerical and experimental investigation of the effect of moonpool positioning on the hydrodynamics of floating drilling production storage and offloading vessel [J]. Ships and Offshore Structures , 2021, 17 (5): 973-991.
[16] 谷家扬, 毛沛盛, 陶延武, 等. 航行状态下钻井船月池内流场特性[J]. 船舶工程, 2021, 43(8): 49-56+113.
[17] ZHANG X Y, SUN L, SUN C, et al. Study on the influence of the moonpool on the smooth water resistance performance of the ship [J]. Ocean Engineering, 2021, 237.
[18] LEE S K, XU L. CFD study and model test verification of moonpool configuration modifications for minimizing drillship resistance [M]. Practical Design of Ships and Other Floating Structures. 2021: 3-27.
[19] LIU Y, LI H, ZHOU X, et al. The influence of an annular moonpool on towing resistance of a separated polar ocean nuclear energy platform [J]. Ocean Engineering, 2022, 266.
[20] 李想. 冰区核电平台运动分析及连接机构概念设计[D]. 大连: 大连理工大学, 2020.
[21] 鲜于晨松, 吕海宁. 波浪作用下钻井船月池内流体水动力性能研究[J]. 舰船科学技术, 2018, 40(1): 62-69.