为了优化结构整体减振性能,以某海洋平台主机舱为研究对象,利用典型运行工况下平台的振动试验实测数据对主机舱柴发机组引起的结构振动传递进行仿真分析,建立不同的主机舱振动计算模型,比较不同边界条件、不同隔振器刚度对计算结果的影响,提出适用于工程实用的较为精确的主机舱整体有限元仿真模型。通过计算推进器40%功率状态和航行状态2种典型运行工况下主机激励经由机脚、隔振器传递到平台基座的振动传递,并与实船测试结果进行比较,验证了有限元分析模型的合理性和精确性,计算结果可靠,具有较高的工程价值,为后续海洋平台主机舱隔振优化设计提供参考。
In order to meet the need for improving vibration and noise isolation performances, a FEM model was established for the complex system composed of platform cabin, machines and isolators to analyze the vibration transmission from the machine to the isolators and to the foundation of the whole cabin structure. Discussions were presented for influences of five different models with different boundary conditions and isolator stiffnesses. Excitation experiments for the platform engine cabin with two different working conditions, ie., 40% power and sailing, were performed. The vibration responses from the excitation points to the vibration points were obtained. The finite element calculation results were compared with the experimental results. The two results were relatively close with each other which indicated that for the low frequency band, it’s improper to simulate the dynamic characteristics with one cabin model. The FEM model of the engine cabin can meet the need for engineering applications and can also provide some useful reference for isolation optimization design of the offshore platform.
2024,46(5): 74-79 收稿日期:2023-02-28
DOI:10.3404/j.issn.1672-7649.2024.05.014
分类号:U661.44
作者简介:李慧(1991-),女,硕士,工程师,主要从事舰船结构振动噪声研究
参考文献:
[1] LIN T. et al. A study of vibration and vibration control of ship structures[J]. Marine Structures, 2009, 22(4):730-743.
[2] 郭列, 吴士冲, 何富坚. 船舶上层建筑有限元动力计算模型研究[J]. 振动与冲击, 1996, 15(2): 47-52.
GUO L, WU S C, HE F J. A study on dynamic calculation model of ship superstructure by using FEM[J]. Journal of Vibration and Shock, 1996, 15(2): 47-52.
[3] 殷玉梅. 船舶振动建模方法研究[D]. 大连: 大连理工大学, 2007.
[4] 魏立队. 船用二冲程柴油机及推进轴系的振动建模与仿真研究[D]. 大连:大连海事大学, 2012.
[5] 韩飞, 王敏庆. AUV动力舱段简化建模及振动传递特性研究[J]. 机械科学与技术, 2017(4): 616-620.
HAN F, WANG M Q. Simplified modeling and vibration transmission analysis for AUV dynamic cabin[J]. Mechanical Science and Technology for Aerospace Engineering, 2017(4): 616-620.
[6] 李晓伟. 基于虚拟样机技术的16V240ZJ型柴油机振动分析[D]. 大连: 大连交通大学, 2010.
[7] 刘义军, 闫力奇, 曹贻鹏. 主机与螺旋桨激励下某型散货轮船体振动差异特性研究[J]. 噪声与振动控制, 2015(5): 102-106.
LIU Y J, YAN L Q, CAO Y P. Difference characteristic analysis of cargo ship vibration caused by low-speed diesel engine and propeller[J]. Noise and Vibration Control, 2015(5): 102-106.
[8] 刘晓之. 超大型原油船结构振动问题研究[D]. 上海:上海交通大学, 2015.
[9] 付世晓, 赵德有, 黎胜. 船舶局部结构振动分析中边界条件的简化和修正方法研究[J]. 船舶力学, 2004, 8(1): 92-98.
FU S X, ZHAO D Y, LI S. Study on simplification of boundary conditions in ship's local structure vibration analysis[J]. Journal of Ship Mechanics, 2004, 8(1): 92-98.
[10] 殷学文, 丁旭杰, 华宏星, 等. 具有浮筏的有限圆柱壳体的尺度对其振动和声辐射的影响[J]. 振动与冲击, 2009(4): 47-50.
YIN X W, DING X J, HUA H X, et al. Influence of dimension of a finite cylindrical shell with a floating raft on its vibration and acoustics radiation[J]. Journal of Vibration and Shock, 2009(4): 47-50.
[11] 王醒, 迟少艳, 杨青, 等. 半潜船舱段有限元分析[J]. 船舶工程, 2021(12): 56-62.
WANG X, CHI S Y, YANG Q, et al. Hull finite element analysis of semi-submersible vessel[J]. Ship Engineering, 2021(12): 56-62.