以一台四冲程高压直喷天然气发动机为研究对象,模拟研究了5种天然气预喷量耦合5种废气再循环(EGR)率对部分预喷天然气发动机的燃烧和排放特性的影响。结果表明,相比于高压直喷模式,部分预喷模式有着更高的缸内峰值压力、峰值热释放率和最大压力升高率。预喷比例的增加会提前发动机燃烧相位、缩短燃烧持续期,进而降低发动机的指示燃料消耗率,但是EGR的加入会削弱这种效果。较高的预喷量耦合中等比例EGR能够削弱NOx-soot的“trade-off”关系;30%EGR率耦合40%预喷量能够使发动机具有较低的指示燃油消耗率,产生较低的甲烷、未燃HC和CO排放,以及优于非预喷方案的NOx和soot排放特性。
Based on a four stroke high pressure direct injection natural gas engine, the coupling effects of five natural gas pre-injection volumes and five EGR rates were simulated and studied to compare and discuss the combustion and emission characteristics of a partially premixed natural gas engine. The results show that compared with the high pressure direct injection mode, partial pre-injection mode has higher peak in-cylinder pressure, peak heat release rate and maximum pressure rise rate. Increasing of pre-injection ratio will advance the engine combustion phase and shorten the combustion duration, thereby reducing the engine's indicated fuel consumption rate, but the addition of EGR will weaken this effect. The higher pre-injection rates coupled with moderate EGR can weaken the NOx-soot "trade-off" relationship. The 30% EGR rates coupled with 40% pre-injection can result in engine with lower indicated fuel consumption rates, lower methane, unburned HC and CO emissions, and better NOx and soot emission characteristics than direct injection solutions.
2024,46(5): 95-102 收稿日期:2023-03-15
DOI:10.3404/j.issn.1672-7649.2024.05.018
分类号:U664.121;TK402
基金项目:国家自然科学基金资助项目(51909154);上海高水平地方高校创新团队(海事安全与保障)项目;上海船舶智能运维与能效监控工程技术研究中心项目(20DZ2252300)
作者简介:黄文庆(1996-),男,硕士研究生,研究方向为天然气双燃料发动机的性能与排放
参考文献:
[1] 陶一凯. 低速二冲程柴油机废气再循环仿真研究[D]. 上海: 上海交通大学, 2015.
[2] 张伟刚, 程晓夏, 佟佳洋, 等. 柴油硫含量对柴油机使用的影响[J]. 船舶与海洋工程, 2015: 48-51.
[3] KESKINEN K, KAARIO O, NUUTINEN M, et al. Mixture formation in a direct injection gas engine: numerical study on nozzle type, injection pressure and injection timing effects[J]. Energy, 2016, 94: 542-556.
[4] 吴振阔. 天然气/柴油双燃料发动机燃烧的数值研究及优化[D]. 长沙: 湖南大学.
[5] 孙建文. 柴油/天然气双燃料发动机的开发与试验研究[D]. 济南: 山东大学, 2012.
[6] WEI L, GENG P. A review on natural gas/diesel dual fuel combustion, emissions and performance[J]. Fuel Processing Technology, 2016, 142: 264-278.
[7] LI M H, ZHANG Q, LI G X, et al. Experimental investigation on performance and heat release analysis of a pilot ignited direct injection natural gas engine[J]. Energy, 2015, 90: 1251-1260.
[8] ZHANG Q, LI M H, SHAO S D. Combustion process and emissions of a heavy-duty engine fueled with directly injected natural gas and pilot diesel[J]. Applied Energy, 2015, 157: 217-228.
[9] ZHANG Q, LI M, LI G, et al. Effects of injection parameters on the combustion and emission characteristics of diesel-piloted direct-injection natural gas engine during idle conditions[J]. Journal of Energy Engineering, 2015, 141(4): 04014043.
[10] JONES H L, ROGAK S N, BUSHE W K, et al. The effects of high-pressure injection on a compression–ignition, direct injection of natural gas engine[C]//Internal Combustion Engine Division Fall Technical Conference, 2007.
[11] MCTAGGART-COWAN G P, JONES H L, ROGAK S N. The effects of high-pressure injection on a compression-ignition, direct injection of natural gas engine[C]//ASME Internal Combustion Engine Division 2005 Fall Technical Conference, 2005.
[12] MCTAGGART-COWAN G, MANN K, HUANG J, et al. Direct injection of natural gas at up to 600 bar in a pilot-ignited heavy-duty engine[J]. SAE International Journal of Engines, 2015, 8(3): 981-996.
[13] 刘亮欣, 黄佐华, 蒋德明, 等. 不同喷射时刻下缸内直喷天然气发动机的燃烧特性[J]. 内燃机学报, 2005(05): 469-474.
[14] 徐向, 张强, 苏东超. 天然气喷射提前角对高压直喷天然气发动机燃烧和排放的影响[J]. 内燃机与配件, 2019(14): 80-82.
[15] LI J Z, DENG L F, GUO J J, et al. effect of injection strategies in diesel/ng direct-injection engines on the combustion process and emissions under low-load operating conditions[J]. Energies, 2020, 13(4): 990.
[16] FLOREA R, NEELY G D, ABIDIN Z, et al. Efficiency and emissions characteristics of partially premixed dual-fuel combustion by co-direct injection of ng and diesel fuel (DI2)[C]//SAE Technical Paper Series, 2016.
[17] 魏立江, 周思源, 路秀伟, 等. 引燃策略对天然气直喷发动机射流燃烧及排放的影响[J]. 内燃机工程, 202, 43(5): 38-47.
[18] LI M, WU H, ZHANG T, et al. A comprehensive review of pilot ignited high pressure direct injection natural gas engines: Factors affecting combustion, emissions and performance[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109653.
[19] LI M, LIU G, LIU X, et al. Performance of a direct-injection natural gas engine with multiple injection strategies[J]. Energy, 2019, 189: 116363.
[20] 范新雨. 直喷天然气发动机缸内混合和燃烧过程研究[D]. 天津: 天津大学, 2017.
[21] 徐向. 高压直喷天然气发动机部分预混燃烧模式数值研究[D]. 济南: 山东大学, 2020.
[22] 肖民, 周星星. 天然气分段喷射对双燃料发动机性能影响的研究[J]. 船舶工程, 2018, 40(2): 1-7+62.
[23] KHEIRKHAH P. CFD modeling of injection strategies in a high-pressure direct-injection (HPDI) natural gas engine[D]. University of British Columbia, 2015.
[24] MUNSHI S R, MCTAGGART-COWAN G P, HUANG J, et al. Development of a partially-premixed combustion strategy for a low-emission, direct injection high efficiency natural gas engine[C]//Internal Combustion Engine Division Fall Technical Conference, 2011: 111508.
[25] LU X, WEI L, ZHONG J. Effects of injection overlap and EGR on performance and emissions of natural gas HPDI marine engine[J]. Combustion Science and Technology, 2022: 1-18.
[26] ANDERS JON W, et al.A computational study of the mixture preparation in a direct-injection hydrogen engine[J]. Journal of engineering for gas turbines and power:Transactions of the ASME, 2015, 137(11): 5610.
[27] LU X, GENG P. Numerical simulation of performance and emission of marine diesel engine under different gravity conditions[J]. Advances in Mechanical Engineering, 2020, 12(7): 1-12.
[28] LIU H, LI J, WANG J, et al. Effects of injection strategies on low‐speed marine engines using the dual fuel of high‐pressure direct‐injection natural gas and diesel[J]. Energy Science & Engineering, 2019, 7(5): 1994-2010.
[29] LIU Y D, JIA M, XIE M Z, et al. Development of a new skeletal chemical kinetic model of toluene reference fuel with application to gasoline surrogate fuels for computational fluid dynamics engine simulation[J]. Energy & Fuels, 2013, 27(8): 4899-4909.
[30] HAN Z, REITZ R D. A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling[J]. International journal of heat and mass transfer, 1997, 40(3): 613-625.
[31] GRIMALDI C N, Millo F. Internal combustion engine (ICE) fundamentals[J]. Handbook of clean energy systems, 2015: 1-32.