模糊PID应用于船舶动力定位控制时,因无法保证量化比例因子选取到最优值可能限制控制性能。基于某动力定位船舶的三自由度运动模型,利用串联补偿解耦算法消除船舶横荡与首摇控制量的相互影响,选取纵荡与横荡的时间乘绝对误差积分(Integrals of Time-weighted Absolute Error,ITAE)之和为目标函数,尝试利用天牛须搜索算法(Beetle Antennae Search algorithm,BAS)对模糊PID中的量化比例因子进行优化。利用Matlab/Simulink,采用PID、模糊PID、基于BAS的模糊PID等3种控制策略,对定点定位工况下动力定位船舶在无干扰和瞬时干扰条件运动响应进行仿真。研究发现,相比于PID和模糊PID,基于BAS的模糊PID在纵荡和横荡运动控制上可显著提高控制精度并减少超调量,进而可改善动力定位系统性能。
The dynamic positioning performance adopting fuzzy PID is limited for a ship as it is hard to select the optimal quantitative scaling factors. This study tries to optimize the quantization scaling factor in fuzzy PID by use of the BAS (Beetle Antennae Search algorithm) employing the three-degree of freedom model of a dynamic positioning ship. The sum of ITAE (Integral of Time-weighted Absolute Error) of sway and yaw motions is taken as the objective function, and series compensation decoupling algorithm is used to eliminate the interaction of the corresponding control quantities. Simulations are performed via Matlab/Simulink to analyze the dynamic response of the ship under fixed point positioning conditions adopting PID, fuzzy PID, and BAS-based fuzzy PID. Compared with PID and fuzzy PID, it has found that BAS-based fuzzy PID can significantly improve the control accuracy and reduce the overshoots remarkably in surge and sway motions, which may benefit for improving the performance of dynamic positioning systems.
2024,46(6): 13-19 收稿日期:2023-04-02
DOI:10.3404/j.issn.1672-7649.2024.06.003
分类号:U664.82-2
基金项目:国家自然科学基金资助项目(51879161)
作者简介:耿骏杰(1998-),男,硕士研究生,研究方向为舰船动力定位系统
参考文献:
[1] 廖成毅, 杨颖, 吉宇人. 船舶动力定位控制策略研究综述[J]. 舰船科学技术, 2020, 42(17): 1-5.
LIAO C Y, YANG Y, JI Y R. Research on ship dynamic positioning control strategies[J]. Ship Science and Technology, 2020, 42(17): 1-5.
[2] 张嫦利, 王磊, 李博, 等. PID参数对动力定位系统定位精度的影响[J]. 实验室研究与探索, 2015, 34(3): 8-12.
ZHANG C L, WANG L, LI B, et al. Effects of selection of PID coefficients on positioning accuracy of DP system[J]. Research and Exploration in Laboratory, 2015, 34(3): 8-12.
[3] INOUE Y, DU J. An application of self-tuning fuzzy controller to dynamic positioning system of floating production system[J]. Journal of Offshore Mechanics & Arctic Engineering, 1996, 118(4): 241-246.
[4] 赵国华. 模糊控制方法的水面船舶动力定位控制[J]. 舰船科学技术, 2021, 43(18): 109-111.
ZHAO G H. Fuzzy control method of water surface ship power positioning control[J]. Ship Science and Technology, 2021, 43(18): 109-111.
[5] 龙洋, 王猛. 动力定位船舶模糊解耦定速航行控制算法[J]. 中国舰船研究, 2019, 14(3): 152-157.
LONG Y, WANG M. Fuzzy decoupling constant-velocity navigation control algorithm for dynamic positioning ship[J]. Chinese Journal of Ship Research, 2019, 14(3): 152-157.
[6] 张梅红. 车载自动调平液压系统设计及其模糊PID控制分析[J]. 中国工程机械学报, 2021, 19(5): 453-457+470.
ZHANG M H. Design of auto leveling hydraulic system and analysis of fuzzy PID control[J]. Chinese Journal of Construction Machinery, 2021, 19(5): 453-457+470.
[7] 钱素娟, 张伟, 李强. 基于模糊PID的电液比例阀流量控制设计及分析[J]. 中国工程机械学报, 2021, 19(6): 512-517.
QIAN S J, ZHANG W, LI Q. Flow control design and analysis of electro-hydraulic proportional valve based on fuzzy PID[J]. Journal of China Construction Machinery, 2021, 19(6): 512-517.
[8] 陈珊珊. 模糊PID控制在船舶动力定位系统中的应用[J]. 舰船科学技术, 2015, 37(3): 119-121+129.
CHEN S S. Research on the application of fuzzy PID control in the ship dynamic positioning system[J]. Ship Science and Technology, 2015, 37(3): 119-121+129.
[9] 董梦玲. 船舶动力定位系统的模糊PID控制及优化研究[D]. 武汉: 武汉理工大学, 2019.
[10] 王路, 王久和, 赵燕等. Buck-Boost变换器PI+PBC控制器参数的多目标优化[J]. 电力系统及其自动化学报, 2022, 34(11): 84-91+99.
WANG L, WANG J H, ZHAO Y, et al. Multi-objective optimization of PI+PBC controller parameters for Buck-Boost converter[J]. Proceedings of the CSU-EPSA, 2022, 34(11): 84-91+99.
[11] 张相闻, 王磊, 李振江, 等. 锚泊辅助动力定位推进器布置方式分析[J]. 实验室研究与探索, 2013, 32(10): 7-10+72.
ZANG X W, WANG L, LI Z J, et al. On the propeller arrangement manners of the mooring assisted dynamic positioning[J]. Research and Exploration in Laboratory, 2013, 32(10): 7-10+72.
[12] 陈子珍, 阎威武. 多变量解耦控制系统设计与仿真[J]. 控制工程, 2014, 21(S1): 93-95+99.
CHEN Z Z, YAN W W. Design and simulation of multi-variable decoupling control system[J]. Control Engineering of China, 2014, 21(S1): 93-95+99.
[13] JIANG X Y, LI S. Beetle antennae search algorithm for optimization problems[J]. International Journal of Robotics and Contro1, 2018, 1(1): 1-5.
[14] 欧阳宗英. 天牛须搜索算法的改进及其应用[D]. 赣州: 江西理工大学, 2021.
[15] 刘胜. 现代船舶控制工程[M]. 北京: 科学出版社, 2010.
[16] 邵静林. 模糊PID解耦算法在船舶动力定位系统中的应用研究[D]. 武汉: 武汉理工大学, 2014.
[17] 钟亮. 浮式风机系泊断缆动力响应分析[D]. 哈尔滨: 哈尔滨工程大学, 2020.
[18] 吴雷振. 船舶风载荷经验公式与计算流体力学方法的对比研究[D]. 大连: 大连海事大学, 2019.