传统采用螺距仪的测量方式效率低且准确性有待提高,为了准确获取船用螺旋桨的变形情况,提出一种使用三维激光扫描仪对其测量并进行变形分析的方法。在获取多视角的三维激光点云数据后,先进行裁剪去噪的预处理,然后对点云进行基于改进的SAC-IA粗拼接和K-D Tree加速处理的ICP精拼接,并对拼接精度进行分析,最后在CATIA软件中对比基于点云建模拟合的模型与原设计模型,得到船用螺旋桨直观且具体的变形情况,验证了该方法的可行性。
The traditional measurement method using pitch instrument has low efficiency and its accuracy needs to be improved. In order to accurately obtain the deformation of marine propeller, a method using 3D laser scanner to measure and analyze its deformation is proposed. After obtaining the 3D laser point cloud data from multiple perspectives, the pre-processing of clipping and de-noising is carried out first, and then the point cloud is processed by the improved SAC-IA coarse splicing and ICP fine splicing accelerated processing of K-D Tree, and the accuracy of the splicing is analyzed. Then the simulation model based on the point cloud is compared with the original design model in CATIA software. The direct and specific deformation of marine propeller is obtained, which verifies the feasibility of this method.
2024,46(6): 26-30 收稿日期:2023-04-04
DOI:10.3404/j.issn.1672-7649.2024.06.005
分类号:U664.33
基金项目:江苏省产学研合作项目(BY2022813)
作者简介:牛凯(2000-),男,硕士研究生,研究方向为船舶与海洋工程装备制造
参考文献:
[1] 陈超, 郑攀, 李猛猛, 等. 船用螺旋桨的逆向建模研究[J]. 机械设计与制造, 2020(9): 271-275.
CHEN Chao, ZHENG Pan, LI Mengmeng, et al. Research on reverse modeling of marine propeller[J]. Machinery Design and Manufacture, 2020(9): 271-275.
[2] ZHANG X, HONG Y, YANG F, et al. Propulsive efficiency and structural response of a sandwich composite propeller[J]. Applied Ocean Research, 2019, 84: 250-258.
[3] 王玉. 大型船用螺旋桨叶检测关键技术研究[D]. 镇江: 江苏科技大学, 2021.
[4] 熊忠星. 大型螺旋桨叶片激光测量的装置设计与精度控制[D]. 武汉: 华中科技大学, 2015.
[5] 潘济宇, 张水强, 苏志龙, 等. 基于数字图像相关的水下螺旋桨三维变形测量[J]. 光学学报, 2021, 41(12): 108-116.
PAN Jiyu, ZHANG Shuiqiang, SU Zhilong, et al. 3D Deformation measurement of underwater propeller based on Digital Image Correlation[J]. Acta Optica Sinica, 2021, 41(12): 108-116.
[6] 王国利, 高婷, 郭明. 相位式地面三维激光扫描点云的噪声滤除[J]. 测绘通报, 2019(S1): 190-194.
WANG Guoli, GAO Ting, GUO Ming. Noise filtering of point cloud in phase ground 3D laser scanning[J]. Bulletin of Surveying and Mapping, 2019(S1): 190-194.
[7] 曾令权. 基于点云数据的船舶轮廓线测绘研究[J]. 舰船科学技术, 2021, 43(12): 208-210.
ZENG Lingquan. Research on ship contour mapping based on point cloud data[J]. Ship Science and Technology, 2021, 43(12): 208-210.
[8] 王智, 张慧敏, 沈璟璟, 等. 三维激光扫描在顶管穿越高速路变形监测的应用[J]. 城市勘测, 2022(6): 139-141.
WANG Zhi, ZHANG Huimin, SHEN Jingjing, et al. Application of three-dimensional laser scanning in deformation monitoring of pipe jacking crossing highway[J]. Urban Survey, 2022(6): 139-141.
[9] 马铁军. 隧道变形监测中地面激光技术的应用[J]. 中国高新科技, 2022(113): 69-70.
MA Tiejun. Application of ground laser technology in tunnel deformation monitoring[J]. China High and New Technology, 2022(113): 69-70.
[10] 赵亚波, 王智. 基于三维激光点云的钢结构变形分析[J]. 测绘通报, 2021(5): 155-158.
ZHAO Yabo, WANG Zhi. Deformation analysis of steel structure based on three-dimensional laser point cloud[J]. Bulletin of Surveying and Mapping, 2021(5): 155-158.
[11] 鲁冬冬, 邹进贵. 三维激光点云的降噪算法对比研究[J]. 测绘通报, 2019(S2): 102-105.
LU Dongdong, ZOU Jingui. Comparative study on noise reduction algorithms of three-dimensional laser point cloud[J]. Bulletin of Surveyingand Mapping, 2019(S2): 102-105.
[12] 杨小乐. 基于逆向工程的船体构件数字化检测方法研究[D]. 大连: 大连理工大学, 2020.
[13] 李慧慧, 刘超, 陶远. 一种改进的ICP激光点云精确配准方法[J]. 激光杂志, 2021, 42(1): 84-87.
LI Huihui, LIU Chao, TAO Yuan. An improved accurate registration method for ICP laser point cloud[J]. Laser Journal, 2021, 42(1): 84-87.
[14] RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE international conference on robotics and automation, IEEE, 2009: 3212-3217.
[15] HAN Jianda, YIN Peng, HE Yuqing, et al. Enhanced ICP for the registration of large-scale 3D environment models: an experimental study[J]. Sensors, 2016, 16(2): 228.