针对LNG燃料船舶在碰撞事故发生情况下的LNG燃料罐结构安全问题,应用有限元方法建立有限元分析模型,并参照规范形成碰撞载荷计算及加载、结构强度评价等方法,提出碰撞冲击载荷作用下船用LNG燃料罐结构安全评价的解决方案。以18 m3船用LNG燃料罐作为研究对象进行仿真计算分析,评估碰撞载荷作用下LNG燃料罐筒体、封头、内外容器间的支撑结构及鞍座等部件的应力水平和总体结构安全状况。结果表明,该船用燃料罐各构件应力均小于规范中的许用值,强度满足要求,符合行业规范,验证有限元分析方法在LNG燃料罐结构强度评价的可行性;内容器是工况条件下最容易失效的结构,其最大应力可达123.63 MPa,与许用值相差13.07 MPa。
Aiming at the structural safety of LNG bunker tanks of LNG-fuelled ships under the occurrence of collision accidents, the finite element analysis model was established by applying the finite element method, and the methods of calculation and loading of collision loads and structural strength evaluation were formed with reference to the code, and a solution for the structural safety evaluation of marine LNG bunker tanks under the action of collision impact loads was proposed. Simulation calculations and analyses were carried out with the 18 m3 marine LNG fuel tank as the research object, and the stress levels and overall structural safety of the LNG fuel tank barrel, head, support structure between the inner and outer vessel and saddle were evaluated under the action of collision loads. The results show that: the stresses in all components of the marine fuel tank are less than the permissible values in the code, the strength meets the requirements and conforms to the industry code, verifying the feasibility of the finite element analysis method in the structural strength evaluation of LNG fuel tanks; the inner vessel is the structure most prone to failure under working conditions, and its maximum stress can reach 123.63MPa, which is 13.07MPa different from the permissible value.
2024,46(6): 38-42 收稿日期:2023-04-06
DOI:10.3404/j.issn.1672-7649.2024.06.007
分类号:U663.9
基金项目:浙江省科技计划项目省级重点研发项目(2021C03184);舟山市科技计划项目(2020C31106,2021C41003)
作者简介:温小飞(1977-),男,博士,副教授,研究方向为船用燃料供应系统
参考文献:
[1] WALTER C I, WU Hongwei. Some recent advances in liquefied natural gas (LNG) production, spill, dispersion, and safety[J]. Energy Fuels, 2014, 28(6).
[2] 李俊杰. 野双碳冶目标背景下国内进口 LNG 产业发展思考[J]. 中国海上油气, 2022, 34(2): 208-214.
[3] HUSAINI, MUBARAK A Z, AGUSTIAR R. Study on pipe deflection by using numerical method[J]. Iop Conference, 2018, 35(2): 31-42.
[4] HWANG S Y, KIM M S, LEE J H. Thermal stress analysis of process piping system installed on lng vessel subject to hull design loads[J]. Journal of Marine Science and Engineering, 2020, 8(11): 926-940.
[5] LU H, MA G, LI X, et al. Stress analysis of lng storage tank outlet pipes and flanges[J]. Energies, 2018, 11(4): 877-891.
[6] 于志浩. 中小型LNG船船体强度分析研究[D]. 大连: 大连理工大学, 2010.
[7] 刘玉智. 28000 m3LNG运输船结构设计与强度研究[D]. 上海: 上海交通大学, 2014.
[8] 宫燕. 内河小型LNG运输船抗碰撞评估及结构加强研究[D]. 武汉: 华中科技大学, 2013 .
[9] 徐双东, 胡志强, 陈刚. 冰区加强LNG船舷侧抗撞性能仿真研究[J]. 船舶工程, 2016, 38(6): 1-5,13.
[10] 窦旭. 内河小型LNG船舶碰撞结构损伤数值研究[D]. 大连: 大连海事大学, 2016.
[11] 朱永龙. 双燃料动力化学品船LNG储罐的设计应用研究[D]. 镇江: 江苏科技大学, 2021.
[12] 李建国. 压力容器设计的力学基础及其标准应用[M]. 北京: 机械工业出版社, 2004.
[13] IMO. International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC CODE)[S]. 2016
[14] 钢制压力容器-分析设计标准: JB 4732—2005[S]. 中国标准出版社, 2005.
[15] 天然气燃料动力船舶规范[S]. 北京: 中国标准出版社, 2013.