加肋圆柱壳是水下航行器的重要结构形式,内部安装有大量机械设备,设备运行产生的低频振动通过基座等结构传递至壳体,引起壳体振动并产生低频辐射噪声,严重影响水下航行器的隐蔽性。通过开展机械设备安装位置声学优化设计研究,建立基于谱元法的加肋圆柱壳振动响应理论计算方法,得到不同安装位置设备振动引起的加肋圆柱壳振动响应,并以加肋圆柱壳整体法向振动响应最小为目标函数,提出加肋圆柱壳内设备位置声学设计方法。数值计算及实验结果验证了该声学优化方法的有效性,对水下航行器机械噪声控制具有重要意义。
The ribbed cylindrical shell is an important structural form of underwater vehicle, which is equipped with a large number of mechanical equipment. The low-frequency vibration generated by the equipment operation is transmitted to the shell through the structure such as the base, causing the shell vibration and low-frequency radiation noise, which seriously affects the concealment of underwater vehicleA theoretical calculation method of vibration response of the ribbed cylindrical shell based on the spectral element method was established through acoustic optimization design of the installation position of mechanical equipment, and the vibration response of the ribbed cylindrical shell caused by the vibration of equipment at different installation positions was obtained. Taking the minimum normal vibration response of a ribbed cylindrical shell as the objective function, an acoustic design method for the position of equipment in a ribbed cylindrical shell was proposed.Numerical and experimental results verify the effectiveness of the acoustic optimization method, which is of great significance for mechanical noise control of underwater vehicles.
2024,46(6): 43-49 收稿日期:2023-04-11
DOI:10.3404/j.issn.1672-7649.2024.06.008
分类号:TB535
基金项目:国家自然科学基金资助项目(51509253)
作者简介:邹蕙阳(1999-),女,硕士研究生,研究方向为振动噪声控制
参考文献:
[1] 胡新欢. 圆柱壳耦合结构声振特性及主动控制仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
[2] 温华兵, 刘林波, 吴晨晖. 圆柱耐压壳基座板厚对振动传递性能的影响[J]. 船海工程, 2015, 44(2): 6-9+14.
WEN H B, LIU L B, WU C H. Influence of plate thickness on vibration transfer performance of cylindrical pressure shell[J]. Ship Sea Engineering, 2015, 44(2): 6-9+14.
[3] 胡泽超, 何琳, 李彦. 圆柱壳体振动主动控制中作动器的优化配置[J]. 船舶力学, 2019, 23(11): 1007-7294.
HU Ze C, HE L, LI Y. Optimal configuration of actuator in active vibration control of cylindrical shell[J]. Mechanics of Ship, 2019, 23(11): 1007-7294.
[4] JUN W S, SEUNG B C, HEUNG S K. Vibration control of smart hull structure with optimally placed piezoelectric composite actuators[J]. Intertional Journal of Mechanical Sciences, 2011, 63(8): 647-659.
[5] BRAND K B. Method for optimal actuator and sensor placement for large flexible structures[J]. Journal of Guidance Contril & Dynamics, 2012, 15(1): 49-57.
[6] 姚熊亮, 计方. 基座含阻振质量的动力舱段全频段声振特性数值研究[J]. 船舶力学, 2010, 10: 13-17.
YAO X L, JI F. Full frequency acoustic and vibration characteristics of power cabin with vibration resistance mass of base Study on Numerical Simulation[J]. Ship Mechanics, 2010, 10: 13-17.
[7] 刘潇翔, 胡军. 结构包含密集模态时主动振动控制中作动器/传感器的优化配置[J]. 中国科学, 2010, 40(6): 1276-1285.
LIU X X, HU J. Optimal configuration of actutors/sensors in active vibration control for structures containing dense modes[J]. Science in China, 2010, 40(6): 1276-1285.
[8] 马扣根, 顾仲权. 时域离散系统的可控度及其在传感器/作动器配置中的应用[J]. 振动与冲击, 1993, 47(3): 1-7.
MA K G, GU Z Q. Control labillity of time-domain discrete systems and its application in sensor/actuator configuration[J]. Vibration and Shock, 1993, 47(3): 1-7.
[9] 张志谊, 傅志方, 饶柱石. 模态的可观可控度与传感器、作动器的布置[J]. 振动与冲击, 1998, 17(2): 5-8.
ZHANG Z Y, FU Z F, RAO Z S. The observable control lability of mode and the arrangement of sensor and actuctor[J]. Vibration and Shock, 1998, 17(2): 5-8.
[10] DOYLE J F. Wave propagation in structures[M]. New York: Springn-Verlag, 1997.