船舶短上层建筑(或甲板室)由于规模小,横剖面正应力沿高度分布不满足平断面假定,应力分布规律与一般船型上层建筑不同,规范中缺乏针对性的设计依据。以一艘典型的短上层建筑油船为研究对象,设计多种短上建方案,借助有限元法对船舶短上层建筑甲板应力分布规律进行研究,讨论了短上层建筑长度、高度及其所在位置的影响,有限元结果与斯曼斯基和库尔庙莫夫理论公式结果的对比表明两式都有一定局限性,预报短上层建筑甲板应力会有误差。进一步在有限元结果和理论公式基础上提出新的短上建甲板应力分布公式的基本形式,采用指数函数模型对短上层建筑正应力进行拟合,得出短上层建筑船型的正应力沿高度分布规律公式,验算结果表明新公式适用性较好,可为早期短上层建筑船型强度设计提供参考。
Due to the small scale of the short superstructure of the ship, the normal stress distribution along the height of the cross-section does not meet the plane cross-section assumption, and the stress distribution is different from that of the general ship-type superstructure. However, there is no targeted design basis in the specification. Based on a typical short superstructure oil tanker, this paper designs a variety of short superstructure schemes to study the normal stress distribution law of the deck of the short superstructure with the help of the finite element method, discusses the influence of the length, height and location of the superstructure, and compares the finite element results with the calculation results of the theoretical formula of Шиманский and Кудюмов shows that the two formulas cannot be well applied to the calculation of the deck stress of the short superstructure. Furthermore, a new formula for the normal stress distribution law of short superstructure deck is proposed on the basis of the finite element results and theoretical formulas of each scheme. The exponential function model is used to fit the normal stress of the short superstructure to obtain the formula of the normal stress along the height distribution law of the short superstructure ship type, and the verification results show that the new formula is better applicable, which can provide a theoretical basis for the early design of the strength design of the short superstructure ship type.
2024,46(6): 50-57 收稿日期:2023-04-12
DOI:10.3404/j.issn.1672-7649.2024.06.009
分类号:U661.99
作者简介:廖世扬(1998-),男,硕士研究生,研究方向为船舶与海洋工程结构
参考文献:
[1] 陆鑫森. 船舶上层建筑的强度问题[J]. 交通大学学报, 1958(3): 186-223.
[2] CRAWFORD L. Discussion of nonlinear distribution of bending stresses[J]. Applied Mechanics, 1953(9): 438.
[3] CRAWFORD L. Theory of long ship’s superstructures[J]. Trans. Society of Naval Architects and Marine Engineers, 1950(4): 693.
[4] BLEICH H H. Nolinear Distribution of bending stressed due to distortion of the cross section[J]. Applied Mechanics, 1953(3): 95-104.
[5] Ю. А. Шиманский. Проектирование Прерывистых Свяэей Суловото Корнуса[M]. Сулпромтиэ, 1954.
[6] A. A. Кудюмов. Прочностъ Кораоля[M]. Судпромтиз, 1956.
[7] 陈倩, 张世联, 李源源. 铝合金上层建筑参与船体总纵弯曲的特性研究[J]. 船舶工程, 2011, 33(S2): 21-24+28.
[8] 王西典. 计入有效度的强力上层建筑设计研究[D]. 上海: 上海交通大学, 2015.
[9] 严卫祥, 赵文斌, 高峰. 长上层建筑计入船体梁总纵强度研究[J]. 船舶设计通讯, 2017(151): 44-48.
[10] 于滨, 陈志坚, 唐宇航. 岛式上层建筑总强度计算方法[J]. 舰船科学技术, 2019, 41(15): 12-16.
[11] 杨斌, 裴志勇, 吴卫国. 基于修正双梁理论的邮轮应力分布特性研究[J]. 船舶力学, 2022, 26(10): 1503-1513.
[12] HENDRIK N, PETRI V, PENTTI K. A theory of coupled beams for strength assessment of passenger ships[J]. Marine Structures, 2005(8): 599
[13] 杨平, 吴凯. 上层建筑对船体总纵弯曲的效应分析[J]. 武汉交通科技大学学报, 1999(1): 34-39.
[14] 孔超群. 圣维南原理研究工作综述[J]. 上海力学, 1990(3): 35-40.
[15] MORSHEDSOLOUK F, KHEDMATI M R. An extension of coupled beam method and its application to study ship's hull-superstructure interaction problems[J]. Latin American Journal of Solids and Structures, 2011(3): 28-33.
[16] HOVGAARD. W. A New Theory of the Distribution of Shearing Stresses in Riveted and Welded Connection[J]. T. INA1931(8)
[17] 中国船级社. 钢质海船入级规范[S]. 2021
[18] 谢心, 吴嘉蒙, 王德禹. 基于剪流分布规律的节点力加载方式在船体结构有限元分析中的应用[J]. 舰船科学技术, 2017, 39(5): 12-17.