为了提高动力定位(DP)铺缆船在铺设海底电缆时的路径循迹能力,设计非洲秃鹫算法优化模糊PID的船舶控制器(AVOA-Fuzzy-PID)。船舶运动数学模型采用三自由度,加入风、浪、流作用力模拟海况,以船舶的位置和姿态矢量与实际值的差值作为控制器输入。在传统PID控制器基础上加入模糊控制,根据模糊控制规则寻求Kp、Ki、Kd的调整变化量ΔKp、ΔKi、ΔKd与e和de间的关系,自动调节参数,加强控制器稳定性,使船舶沿规划路径向目标位置航行。采用非洲秃鹫算法结合Levy飞行策略计算船舶模型,通过确定每组最优秃鹫、秃鹫饥饿率、探索和开发4个阶段,并在开发阶段引入Levy飞行策略,增强全局搜索能力,确定秃鹫食物源最优位置,防止结果陷入局部最优,提高计算结果精确性。仿真结果表明,结合AVOA算法的模糊PID控制器能够提高船舶路径跟踪效率,使其跟踪过程较为平顺。通过对比PSO、GA和SSA算法优化Fuzzy-PID控制器参数可以看出,AVOA对Kp、Ki、Kd参数整定收敛速度较快,控制器适应度值较低,寻优精度较高,能够使船舶沿规划路径航行。
In order to improve the path tracking ability of dynamic positioning (DP) cable-laying ships when laying submarine cables, an African culture algorithm combined with a fuzzy PID ship controller (AVOA fuzzy PID) is designed. According to the mathematical model of three degrees of freedom ship plane motion, the force of the wind, wave, and current is added to simulate the sea state, and the difference between the ship's position and attitude vector and the actual value is taken as the controller input, the relationship between the adjustment changes of Kp、Ki、Kd and the relationship between ΔKp、ΔKi、ΔKd and e and de is sought according to the fuzzy control rules, and the parameters are automatically adjusted to make the ship sail along the planned path to the target position. The African Vulture Algorithm computational model was used to determine the optimal location of vulture food sources by determining the optimal vulture for each group, the vulture hunger rate, exploration, and exploitation in four stages, combined with the Levy flight strategy to prevent falling into a local optimum and improve the accuracy of the computational results. The results show that the AVOA algorithm rectifies the Kp、Ki、Kd parameters quickly. For not different algorithms, AVOA has higher accuracy in finding the optimum and faster convergence. It is also combined with fuzzy PID control to improve the efficiency of ship path tracking and make its tracking process smoother.
2024,46(6): 73-80 收稿日期:2022-11-11
DOI:10.3404/j.issn.1672-7649.2024.06.013
分类号:U661.33
基金项目:国家电网公司科技项目(SGSDYT00JJJS2100597)
作者简介:赵勇(1979-),男,高级工程师,研究方向为电网工程建设管理
参考文献:
[1] 徐海祥, 李超逸, 余文曌, 等. 智能船舶循迹控制方法研究[J]. 华中科技大学学报(自然科学版), 2020, 48(8): 103–8
XU Haixiang, LI Chaoyi, YU Wenju, et al. Research on intelligent ship tracking control method[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(8): 103–8
[2] 尤冬梅, 孙英培. 非线性船舶模型运动控制中鲁棒神经网络的应用[J]. 舰船科学技术, 2022, 44(12): 161–164
YOU Dongmei, SUN Yingpei. Application of therobust neural network in motion control of nonlinear ship model[J]. Ship Science and Technology, 2022, 44(12): 161–164
[3] 谢文博, 付明玉, 张健, 等. 动力定位船舶自适应反步逆最优循迹控制[J]. 中国造船, 2013, 54(3): 58–69
XIE Wenbo, FU Mingyu, ZHANG Jian, et al. Adaptive backstepping inverse optimal trajectory control for power positioning ships[J]. China Shipbuilding, 2013, 54(3): 58–69
[4] 孙豫. 线性变参数系统算法在船舶运动与参数控制的应用[J]. 舰船科学技术, 2022, 44(13): 68–71
SUN Yu. Application of linear variable parameter (LPV) system algorithm in ship motion and parameter control[J]. Ship Science and Technology, 2022, 44(13): 68–71
[5] LI, Jia wang. Robust tracking control and stabilization of underactuated ships[J]. Asian Journal of Control, 2018, 20(6): 2143-2153.
[6] WANG Y, WANG H, LI M, et al. Adaptive fuzzy controller design for dynamic positioning ship integrating prescribed performance[J]. Ocean Engineering, 2020, 219(9): 107956
[7] YU C, XIANG X, ZHANG Q, et al. Adaptive fuzzy trajectory tracking control of an under actuated autonomous underwater vehicle subject to actuator saturation[J]. International Journal of Fuzzy Systems, 2017, 20(1): 269–79
[8] 张爱华. 铺缆船作业过程中的循迹控制方法的研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.
[9] YANG C, ZOU Z. Straight-line tracking control for underactuated ships based on LOS and adaptive fuzzy method[J]. Computer Systems Science Engineering, 2017, 32(6): 507–13
[10] 戈一航, 杨光永, 徐天奇, 等. 基于SSA优化PID在移动机器人路径跟踪中的研究[J]. 国外电子测量技术, 2021, 40(9): 64–69.
GE Yihang, YANG Guangyonog, XU Tianqi, et al. Research on SSA-based optimized PID for mobile robot path tracking[J]. Foreign electronic measurement technology, 2021, 40(9): 64–69
[11] 张品, 李长勇. 基于改进模糊PID的全向搬运机器人路径跟踪控制研究[J]. 食品与机械, 2021, 37(6): 114–9+90
ZHANG Pin, LI Changyong. Research on path tracking control of omnidirectional handling robots based on improved fuzzy PID[J]. Food and Machinery, 2021, 37(6): 114–9+90
[12] 祝亢, 黄珍, 王绪明. 基于深度强化学习的智能船舶航迹跟踪控制[J]. 中国舰船研究, 2021, 16(1): 105–13
ZHU Kang, HUANG Zhen, WANG Xuming. Intelligent ship track tracking control based on deep reinforcement learning[J]. China Ship Research, 2021, 16(1): 105–13
[13] FOSSEN T I. A nonlinear unified state-space model for ship maneuvering and control in a seaway[J]. International Journal of Bifurcation Chaos, 2005, 15(09): 2717–2746
[14] FOSSEN T I. Handbook of marine craft hydrodynamic and motion control[Z]. 2011: 133–183
[15] ABDOLLAHZADEH B, GHAREHCHOPOGH F S, MIRJALILI S. African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers & Industrial Engineering, 2021: 1.
[16] CHENG J, YI J, ZHAO D. Design of a sliding mode controller for trajectory tracking problem of marine vessels[J]. Control Theory Applications Iet, 2007, 1(1): 233–237
[17] 冯辉, 胡胜, 余文曌, 等. 基于有限时间引导律的欠驱智能船舶循迹控制[J]. 北京航空航天大学学报, 2021: 1–11.
FENG Hui, HU Sheng, YU Wenzhao, et al. Underdriven intelligent ship tracking control based on finite-time bootstrap law[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021: 1–11.