水下无人航行器具有水下活动范围大、机动性好优点,主要用于大范围地形地貌勘探,水下高速长航程航行时,水下航行器运动特性和姿态控制是研究重点。本文建立水下航行器垂直面航行运动模型,分析高速航行下的运动特性。为保证高速航行高效稳定,提出PID方法控制纵倾和滑模方法控制深度的组合控制策略。通过仿真试验,开展高速航行运动仿真研究。研究结果表明,在高速航行下,水下航行器会产生一定纵倾,且随着航速增加,纵倾影响会越大,高速状态放大了水下航行器外形上下轻微不对称的特性,诱导产生的垂向水动力及力矩增大,进而引起纵倾;在高速航行条件下,水下航行器能稳定保持定深度长距离航行,控制策略具有很好的适用性。
The underwater unmanned vehicle (AUV) has the advantages of large underwater range of activity and good mobility, and is mainly used for large-scale terrain and geomorphology exploration. When underwater high-speed and long-range navigation, the underwater vehicle motion characteristics and attitude control are the focus of research. In this paper, the motion model of underwater vehicle in vertical plane is established, and the motion characteristics of underwater vehicle at high speed are analyzed. In order to ensure efficient and stable high-speed navigation, a combined control strategy of pitch control by PID method and depth control by sliding mode method is proposed in this paper. Through the simulation test, the high-speed navigation motion simulation research is carried out. The research results show that the underwater vehicle will produce a certain pitch at high speed, and the influence of pitch will be greater with the increase of the speed. The high speed status magnifies the slightly asymmetric characteristics of the underwater vehicle shape, resulting in the increase of the vertical hydrodynamic force and torque, and then causes the pitch; Under the condition of high speed navigation, the underwater vehicle can maintain the constant depth and long distance navigation stably, and the control strategy has good applicability.
2024,46(6): 86-89 收稿日期:2023-03-14
DOI:10.3404/j.issn.1672-7649.2024.06.015
分类号:U674.941
基金项目:江苏省前沿引领技术基础研究专项资助项目(BK20202006)
作者简介:王磊(1981-),男,博士,研究员,研究方向为水下航行器总体设计与控制
参考文献:
[1] 朱丹. 美军自主水下航行器发展研究[J]. 指挥控制与仿真, 2020, 42(1): 134-140.
[2] JINMO Park, NAKWAN Kim. Dynamics modeling of a semi-submersible autonomous underwater vehicle with a towfish towed by a cable[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7(2): 409-425.
[3] PARK Jong-Yong, KIM Nakwan, SHIN Yong-Ku. Experimental study on hydrodynamic coefficients for high-incidence-angle maneuver of a submarine[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(1): 100-113.
[4] HOWAN Kim, DEV Ranmuthugala, ZHI Quan Leong, et al. Six-DOF simulations of an underwater vehicle undergoing straight line and steady turning manoeuvres[J]. Ocean Engineering, 2018, 150: 102-112.
[5] 聂为彪, 钱治强, 吴铭, 等. 水下航行器横向操纵性运动预报设计与仿真[J]. 舰船科学技术, 2021, 43(S1): 22-26.
NIE W B, QIAN Z Q, WU M, et al. Design and simulation of lateral maneuverability motion prediction for underwater vehicles [J]. Ship Science and Technology, 2021, 43(S1): 22-26.
[6] 李德军, 张伟, 赵桥生, 等. 深海潜水器运动操纵仿真研究[J]. 舰船科学技术, 2022, 44(8): 69-72.
LI D J, ZHANG W, ZHAO Q S, et al. Simulation study on motion control of deep-sea submersibles [J]. Ship Science and Technology, 2022, 44(8): 69-72.
[7] 魏延辉. UVMS系统控制技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2017.
[8] GERTLER M, HAGEN G R. Standard equations of motion for submarine simulation[J]. Standard Equations of Motion for Submarine Simulation, 1967.
[9] FELDMAN J P. DTNSRDC revised standard submarine equations of motion[J]. PoëmesEtLégendesKommentar, 1979.
[10] 马骋, 连琏. 水下运载器操纵控制及模拟仿真技术[M]. 北京: 国防工业出版社, 2009.
[11] 孙叶义, 杨文山, 周海波. 智能水下航行器动态对接三维视景仿真研究[J]. 舰船科学技术, 2020, 42(23): 47-51.
SUN Y Y, YANG W S, ZHOU H B. Research on 3D visual simulation of dynamic docking of intelligent underwater vehicles [J]. Ship Science and Technology, 2020, 42(23): 47-51.