本文依据翼身融合式飞行器的设计理念设计一种飞翼式水下滑翔机,及其主要设计参数。通过计算发现该飞翼式水下滑翔机较传统水下滑翔机拥有更大的升阻比,可达到15以上。流场分布结果显示飞翼式水下滑翔机在特定速度0.1 m/s、0.3 m/s和0.5 m/s下,机翼周围并未出现明显的流动分离,且机翼表面压力较大程度取决于攻角的大小。对比了不同雷诺数下的机翼表面涡脱落情况,发现随着攻角增大涡的脱落急剧增多,且翼梢小翼尾部涡脱落最为严重,极大影响滑翔机的水动力特性。
This paper designs a flying wing underwater glider based on the design concept of wing-body fusion aircraft, and its main design parameters. Through calculation , it is found that the flying wing underwater glider has a higher lift-to-drag ratio than the traditional underwater glider, which can reach more than 15. The flow field distribution results show that there is no significant flow separation around the wing of a flying wing underwater glider at specific speeds of 0.1 m/s, 0.3 m/s, and 0.5 m/s. The surface pressure of the wing depends greatly on the Angle of attack. By comparing the vortex shedding on the wing surface under different o Reynolds numbers, it is found that the vortex shedding increases sharply with the increase of the Angle of attack, and a large number of vortices appear at the tail of the wingtip small wing, which greatly affects the motion state of the glider.
2024,46(6): 90-97 收稿日期:2023-03-30
DOI:10.3404/j.issn.1672-7649.2024.06.016
分类号:U674.941
基金项目:江苏省高层次创新创业人才引进计划资助项目(JSSCBS20211001)
作者简介:熊仲营(1985-),男,博士,讲师,研究方向为流动控制、仿生设计、多目标优化设计等
参考文献:
[1] 曹俊, 胡震, 刘涛, 等. 深海潜水器装备体系现状及发展分析[J]. 中国造船, 2020, 61(1): 204-218.
CAO Jun, HU Zhen, LIU Tao, et al. Current situation and development of deep-sea submersible equipment[J]. Shipbuilding of China, 2020, 61(1): 204-218.
[2] 金克帆, 王鸿东, 易宏, 等. 海上无人装备关键技术与智能演进展望[J]. 中国舰船研究, 2018, 13(6): 1-8.
JIN Kefan, WANG Hongdong, YI Hong, et al, Key technologies and intelligence evolution of maritime UV[J]. Chinese Journal of Ship Research, 2018, 13(6): 1-8.
[3] 沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.
SHEN Xin-rui, WANG Yan-hui, YANG Shao-qiong, et al. Development of underwater gliders : an overview and prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
[4] 刁宏伟, 李宗吉, 王世哲, 等. 水下滑翔机研究现状及发展趋势[J]. 舰船科学技术, 2022, 44(6): 8-12.
DIAO Hong-wei, LI Zong-ji, WANG Shi-zhe, et al. The research status and development trend of underwater glider[J]. Ship Science and Technology, 2022, 44(6): 8-12.
[5] 邓佳俊. 长航程水下滑翔机外形设计优化研究 [D]. 天津: 天津大学, 2020.
[6] 张帅. 长航程水下滑翔机的减阻技术研究 [D]. 天津: 天津大学, 2018.
[7] 陈越. 长航程水下滑翔机环肋耐压壳体优化设计与实验分析[D]. 天津: 天津大学, 2020: 7-59.
[8] 姜钧喆. 水下滑翔机总体设计与水动力性能分析 [D]. 上海: 上海交通大学, 2018.
[9] 朱崎峰, 宋保维, 丁浩, 等. 一种仿海龟扑翼推进机构设计[J]. 机械设计, 2011, 28(5): 30-33.
ZHU Qi-feng, SONG Bao-wei, DING Hao, et al. Design of a new propulsion mechanism of imitation turtle’s flapping-wing[J]. Journal of Machine Design, 2011, 28(5): 30-33.
[10] 马楷东, 张瑞荣, 郭鑫, 等. 仿双髻鲨头部的仿生机器鱼外型设计及其流场特性[J]. 力学学报, 2021, 53(12): 3389-3398.
MA Kaidong, ZHANG Ruirong, GUO Xin, et al. Shape design and flow field characteristics of a robotic fish imitating the head of a hammerhead[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3389-3398.
[11] 王骁冰. 飞翼式水下滑翔机的水动力性能分析 [D]. 哈尔滨: 哈尔滨工程大学, 2015.
[12] 刘传奇. 翼身融合双尾舵浅水滑翔机水动力性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2020.
[13] 张代雨, 张贝, 王志东, 等. 翼身融合水下滑翔机水动力及外形优化设计[J]. 船舶工程, 2021, 43(3): 117-123.
ZHANG Daiyu, ZHANG Bei, WANG Zhidong, et al. Optimal design of hydrodynamic and shape of blended-wing-body underwater glider[J]. Ship Engineering, 2021, 43(3): 117-123.
[14] 张贝, 王志东, 凌宏杰, 等. 翼身融合水下滑翔机总体设计及性能分析[J]. 舰船科学技术, 2022, 44(1): 97-103.
ZHANG Bei, WANG Zhi-dong, LING Hong-jie, et al. Blended-wing-body underwater glider overall design and performance extension[J]. Ship Science and Technology, 2022, 44(1): 97-103.
[15] 李天博, 王鹏, 孙斌, 等. 一种联翼式水下滑翔机外形优化设计方法[J]. 哈尔滨工业大学学报, 2019, 51(4): 26-32.
LI Tianbo, WANG Peng, SUN Bin, et al. A shape optimization design method of the joined-wing underwater glider[J]. Journal of Harbin Institute of Technology, 2019, 51(4): 26-32.
[16] 李永成, 马峥, 王小庆. 水下滑翔机高效滑翔水动力性能研究[J]. 中国造船, 2020, 61(4): 52-59.
LI Yongcheng, MA Zheng, WANG Xiaoqing. Hydrodynamic performance of autonomous underwater glider with high efficiency[J]. Ship Building of China, 2020, 61(4): 52-59.