深海AUV(自主水下机器人)采用无动力下潜方式能有效节约能源,但是水平或小纵倾角姿态下潜用时较长,水平偏移大。为提高下潜速度,减小下潜偏移距离,对AUV无动力垂直下潜过程进行研究。使用四元数代替欧拉角得到AUV运动方程,并加入洋流和浮力数学模型,通过Simulink仿真模块建立AUV垂直下潜运动仿真方法,解决垂直下潜产生的姿态角解算奇异性问题。通过设置不同仿真工况,得到AUV垂直下潜运动状态量受负浮力、重浮心距离、舵角、初始纵倾角及环境扰动力的作用规律。结果表明,AUV采用垂直下潜方式,可实现较大的下潜速度,同时减小水平偏移距离;洋流扰动是垂直下潜运动产生水平偏移的主要原因;下潜深度6 000 m时,浮力变化扰动导致末端下潜速度减小30%,下潜时间增加21%。
Unpowered diving for deep-sea AUV (autonomous underwater vehicle) can effectively save energy. But it takes a long time to submerge in horizontal or small pitch attitudes, resulting in large horizontal drift. To improve the diving velocity and reduce the diving offset distance, the unpowered vertical diving motion of AUV was studied. To obtain the AUV motion equation using quaternions instead of Euler angles and incorporating ocean currents and buoyancy mathematical models, the motion simulation method of vertical diving for AUV is established though the Simulink simulation module. It solves the singularity problem of attitude angle solution caused by vertical diving. By setting different simulation conditions, the effects of negative buoyancy, distance between the center of gravity and the center of buoyancy, rudder angle, initial pitch angle, and environmental disturbance on the AUV vertical diving motion are obtained. The results show that the AUV can achieve a higher diving velocity and reduce the horizontal drift distance by using the vertical diving method; ocean current disturbance is the main cause of horizontal drift during vertical diving motion; when diving at a depth of 6 000 m, the disturbance of buoyancy changes results in the terminal diving velocity decreasing by 30% and the diving time increasing by 21%.
2024,46(6): 104-111 收稿日期:2023-04-07
DOI:10.3404/j.issn.1672-7649.2024.06.018
分类号:U674.941
基金项目:“十三五”预研项目(2020107/2002);机器人学国家重点实验室自主课题(2022-Z05)
作者简介:王宁(1998-),男,硕士研究生,研究方向为水下机器人水动力学
参考文献:
[1] 李硕, 刘健, 徐会希, 等. 我国深海自主水下机器人的研究现状[J]. 中国科学: 信息科学, 2018, 48(9): 1152-1164.
LI S, LIU J, XU H X, et al. Research status of autonomous underwater vehicles in China[J].Science China: Information Science, 2018, 48(9): 1152-1164.
[2] 张翔. 无动力水下潜航器自由下潜的运动学及致力机理研究[D]. 武汉: 华中科技大学, 2021.
[3] 陈俊. 深渊着陆器技术及生物学应用研究[D]. 北京: 中国科学院大学, 2018.
[4] 张天健, 魏成柱, 张裕芳, 等. 大深度浮力驱动式水下运载器的浮潜运动研究[J]. 船舶工程, 2017, 39(12): 87-94.
ZHANGT J, WEI C Z, ZHANG Y F, et al. Study on Floating and diving for deep-water buoyancy-driven vehicle[J]. Ship Engineering, 2017, 39(12): 87-94.
[5] 练永庆, 宋保维, 李宗吉. 潜伏式武器水下施放后纵平面运动仿真[J]. 水下无人系统学报, 2019, 27(4): 413-419.
LIAN Y Q, SONG B W, LI Z J. Simulation on motion in vertical plane of a latent weapon released underwater [J]. journal of unmanned undersea systems, 2017, 39(12): 87-94.
[6] 高伟, 李天辰, 谷海涛, 等. 深海AUV无动力下潜运动特性研究[J]. 机器人, 2021, 43(6): 674-683.
GAO W, LI T C, GU H T, et al. Unpowered diving motion characteristics of deep-sea autonomous underwater vehicle[J]. Robot, 2021, 43(6): 674-683.
[7] 徐正武, 唐国元, 邓智勇, 等. 四元数在水下航行体运动建模中的应用[J]. 中国舰船研究, 2014, 9(2): 12-16+29.
XU Z W, TANG G Y, DENG Z Y, et al. Applying the Four-parameter approach to establish the motion model of an AUV[J]. Chinese Journal of Ship Research, 2014, 9(2): 12-16.
[8] 赵志超, 李天辰, 谷海涛, 等. 深海运载器无动力纵倾上浮运动特性研究[J]. 水下无人系统学报, 2022, 30(5): 586-596.
ZHAO Z C, LI T C, GU H T, et al. Research on unpowered trim ascent motion characteristics of deep-sea vehicles[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 586-596.
[9] 施生达. 潜艇操纵性[M]. 北京: 国防工业出版社, 2021: 75-78.
[10] 马艳红, 胡军. 姿态四元数相关问题[J]. 空间控制技术与应用, 2008(3): 55-60.
MA Y H, HU J. On attitude quaternion[J]. Aerospace Control and Application, 2008(3): 55-60.
[11] 姚红, 程文华, 张雅声. 飞行器动力学与控制Simulink仿真[M]. 北京: 国防工业出版社, 2018: 3-20.
[12] 刘金夫. 洋流影响下的水下滑翔机垂直面内滑翔运动数值仿真[D]. 武汉: 华中科技大学, 2016.
[13] 武建国, 徐会希, 刘健, 等. 深海AUV下潜过程浮力变化研究[J]. 机器人, 2014, 36(4): 455 (in Chinese)460.
WU J G, XU H X, LIU J, et al. Research on the buoyancy change of deep-sea autonomous underwater vehicle in diving process[J]. Robot, 2014, 36(4): 455 (in Chinese)460.
[14] Office of Ocean Exploration and Research. CAPSTONE CNMI & Mariana Trench MNM (ROV & Mapping)-EX1605L3[EB/OL]. (2014-02-25)[2023-04-01].https://www.ncei.noaa.gov/waf/okeanos-rov-cruises/ex1605l3/.
[15] 赵桥生, 何春荣, 李德军, 等. 载人潜水器空间运动仿真计算研究[C]//第三十届全国水动力学研讨会暨第十五届全国水动力学学术会议论文集(下册). 合肥: 《水动力学研究与进展》杂志社, 2019: 372-378.
ZHAO Q S, HE C R, LI D J, et al. Research on space motion simulation of manned submersible[C]// Proceedings of the 30th National Symposium on Hydrodynamics and the 15th National Symposium on Hydrodynamics (Vol. 2). Hefei: Journal of Hydrodynamics, 2019, 372-378.
[16] 严升, 张润锋, 杨绍琼, 等. 水下滑翔机纵垂面变浮力过程建模与控制优化[J]. 中国机械工程, 2021, 33(1): 109-117.
YAN S, ZHANG R F, YANG S Q, et al. Modelling and control optimization for underwater gliders of variable buoyancy process in the vertical plane[J]. China Mechanical Engineering, 2021, 33(1): 109-117.