为研究某型在研应急救援气垫船上搭载的三叶涵道螺旋桨的气动特性,基于滑移网格方法建立涵道螺旋桨流场数值预报模型。设计3套不同疏密程度的非结构与结构混合网格方案进行不确定度分析,将NASA涵道螺旋桨的数值计算结果与实验数据进行比较,验证本文建立的数值模型具有较好的可靠性和准确性。基于建立的数值模型,分别计算了孤立螺旋桨和涵道螺旋桨在不同转速下的复杂流动。结果表明,相同转速下,涵道螺旋桨总推力系数较孤立螺旋桨增加10%,工作效率提高25%;涵道扩大了螺旋桨前部低压区的分布范围;涵道壁改变了螺旋桨桨尖流线特性,抑制了桨尖涡的形成,减少了能量损失;该型螺旋桨孤立状态下静推力为470 N,不能满足该型气垫船设计要求,加上涵道后其静推力为516 N,航行状态下推力为327 N,均能满足设计要求。
In order to study the aerodynamic characteristics of a marine three-blade ducted propeller carried on a hovercraft , established a numerical prediction model of the flow field of the ducted propeller based on the slip grid method. Three sets of unstructured and structural hybrid grid schemes with different grid density are designed for uncertainty analysis, and the numerical calculation results of NASA's ducted propeller are compared with the experimental data to verify that the model has good reliability and accuracy. Based on the established model, the complex flows of open propeller and ducted propeller at different rotating speeds are calculated respectively. The results show that at the same rotating speed, the total thrust coefficient of ducted propeller is 10% higher than open propeller, the working efficiency is 25% higher. The duct broadens the distribution range of low pressure areas before the propeller. The duct wall changes the streamline characteristics of the propeller tip, inhibits the formation of the tip vortex, and reduces the energy loss. The static thrust of this type of propeller in isolated state is 470 N, which cannot meet the design requirements of this type of air cushion vehicle. After adding the duct, static thrust is 516 N and the thrust is 327 N under sailing conditions, which can meet the design requirements.
2024,46(7): 1-8 收稿日期:2023-4-25
DOI:10.3404/j.issn.1672-7649.2024.07.001
分类号:U661.1
基金项目:江苏省工业和信息产业转型升级专项资金项目(696785044)
作者简介:张曙光(1976-),男,硕士,研究员,研究方向为船舶设计与建造
参考文献:
[1] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社, 2006.
[2] 许和勇, 叶正寅. 涵道螺旋桨与孤立螺旋桨气动特性的数值模拟对比[J]. 航空动力学报, 2011, 26(12): 2820-2825.
[3] 徐嘉, 范宁军, 赵澍. 涵道飞行器涵道本体气动特性研究[J]. 弹箭与制导学报, 2009, 29(4): 174-178.
[4] 程钰锋, 郑小梅, 脱伟, 等. 涵道螺旋桨气动机理数值分析[J]. 直升机技术, 2021(2): 8-15.
[5] 邓阳平, 米百刚, 詹浩, 等. 涵道螺旋桨地面效应试验与数值计算研究[J]. 西北工业大学学报, 2020, 38(5): 1038-1046.
[6] 闫文辉, 汤斯佳, 王奉明, 等. 共轴对转螺旋桨的非定常气动干扰[J]. 航空动力学报, 2021, 36(7): 1398-1405.
[7] 王红波, 祝小平, 周洲, 等. 垂直/短矩起降飞机机翼内埋式风扇布局气动特性分析[J]. 航空动力学2016, 31(1): 161-167.
[8] 芦志明. 涵道螺旋桨飞行器总体设计[D]. 南京: 南京航空航天大学, 2016.
[9] QIN D H, PAN G, HUANG Q G, et al. Numerical investigation of different tip clearances effect on the hydrodynamic performance of pump jet propulsor[J]. International Journal of Computational Methods, 2018, 15(5): 2-24.
[10] GRUNWALD K J, GOODSON K W. Aerodynamic loads on an isolated shround-propeller configuration for angle of attack from-10° to 110°[R]. NASA TN D-995, 1962.
[11] YAGGY P F , MORT K W. A wind-tunnel investigation of a 4-foot-diameter ducted fan mounted on the tip of a semispan wing[R]. NASA TN D-776, 1961.