液舱晃荡是一种舱内液体受到激励而产生晃动的现象。晃荡会对壁面产生巨大的冲击压力,这不仅会导致舱壁结构的损坏,也会影响船舶的稳定性,甚至在严重时导致船舶倾覆。这种现象普遍存在于船舶与海洋工程中,特别是随着大型LNG船的发展,如何改善液舱晃荡现象成为亟待解决的难题。由于液舱晃荡具有很强的非线性和随机性,是一种非常复杂的自由液面流动问题,因此本文首先建立用于验证MPS方法的二维液舱模型,验证了MPS方法的正确性。随后介绍了坐标转换,建立了用于数值模拟的带有对称水平挡板的液舱模型,最后通过改变挡板的高度和宽度探究对称水平挡板对液舱减晃的效果,旨在为船舶与海洋工程提供一定的理论依据。
Liquid tank sloshing is a phenomenon that the liquid in the tank will be excited to fluctuate under the external load. The sloshing will produce a huge impact pressure on the wall, which may not only lead to the damage of the bulkhead structure, but also will affect the stability of the ship, even resulting in the capsizing of the ship at the worst. It is very necessary to investigate how to improve this phenomenon, especially with the development of large LNG ships. Liquid sloshing is characterized with large deformation of the free surface which is strongly nonlinear and random, so a particle first establish a two-dimensional liquid tank model used to verify the MPS method. Subsequently, the coordinate conversion is introduced, and the liquid compartment model with symmetrical horizontal baffle used for numerical simulation is established. Finally, the effect of symmetrical horizontal baffle on the liquid tank is explored by changing the height and width of the baffle, aiming to provide a certain theoretical basis for ship and ocean engineering.
2024,46(7): 20-26 收稿日期:2023-4-13
DOI:10.3404/j.issn.1672-7649.2024.07.004
分类号:U661.3
基金项目:浙江省重点研发计划项目(2021C03184);岱山县重大研发攻关计划项目(202202)
作者简介:郑啸威(1997-),男,硕士研究生,研究方向为海上安全技术
参考文献:
[1] JIN Xin, LIN Pengzhi. Viscous effects on liquid sloshing under external excitations[J]. Ocean Engineering, 2019, 171: 695-707.
[2] WANG L, WAN Z H, HUANG J H, et al. Research on key technologies of LNG carriers [J]. Ship Science and Technology. 2015, 6: 37(6): 1-5.
[3] HOSAIN M L, SAND U, FDHILA R B. Numerical investigation of liquid sloshing in carrier ship fuel tanks[J]. IFAC-Papers On Line, 2018, 51(2): 583-588.
[4] KOSHIZUKA S, TAMAKO H, OKA Y. A particle method for incompressible viscous flow with fluid fragmentation[J]. Journal of Computational Fluid Dynamics, 1995, 4(1): 29-46.
[5] WU Qiao-rui, TAN M Y, XING J T. An improved particle semi-implicit method for dam break simulation[J]. Journal of Ship Mechanics, 2014, 18(9): 1044-1054.
[6] WU Qiao Rui, WANG L, XIE Y H, et al. Effect of elastic support wall on dam break based on improved MPS method[J]. Journal of Zhejiang Ocean University, 2019, 38(1): 76-82.
[7] WANG Jianqiang , ZHANG Xiaobing. Improved moving particle semi-implicit method for multiphase flow with discontinuity[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 346: 312-331.
[8] HAN Fenglei, WANG Chunhui. Bow flare water entry impact prediction and simulation based on moving particle semi-implicit turbulence method[J]. Shock and Vibration, 2018, 2018(3): 1-16.
[9] KOSHIZUKA S, IKEDA H, OKA Y. Numerical analysis of fragmentation mechanisms in vapor xxplosions[J]. Nuclear Engineering and Design, 1999, 189: 423-433.
[10] 吴巧瑞, 王化明. 一种无网格方法——移动粒子半隐式方法MPS[D]. 上海: 上海交通大学, 2018.
[11] YANG Yaqiang, TANG Z Y, WAN D C. Simulation of liquid tank sloshing with horizontal partition based on MPS method[J]. Research and Progress in Hydrodynamics (Part )A, 2015, 30(2): 146-153.
[12] 黄松兴, 焦甲龙, 孙树政, 等. 基于CFD的单体复合船水动力性能分析[J]. 哈尔滨工程大学学报, 2021, 42(1): 105-111.
[13] 张珍, 陈明辉, 邵菲, 等. 外部激励对刚弹性液舱晃荡影响的数值模拟[J]. 青岛科技大学学报:自然科学版, 2022(4): 97-104.
[14] 王宁, 鹿玮川, 孙士艳. 基于完全非线性边界元方法的楔形液舱入水问题研究[J]. 舰船科学技术, 2022, 44(6): 29-33.