为了提高水下结构瞬态噪声的计算效率和准确性,提出一种基于冲激响应的瞬态噪声近似预报方法。该方法适用于已知结构表面法向振速时的瞬态辐射噪声预报,它通过时域快速算法求解与辐射问题相互易的脉冲点源散射问题获取结构表面各单元的冲激响应,再将各冲激响应与该处相应的法向振速信号作卷积,最后以单元面积为权重对卷积结果进行加权求和便可计算出最终的瞬态噪声场。利用2种典型的解析模型,通过与时域解析解的对比验证了该方法的正确性。针对镶嵌于圆形障板的管阵列结构,利用该近似预报方法对已确定法向振速边界条件下的瞬态辐射噪声进行计算,并结合该模型几何结构分析了考察场点处辐射噪声信号的时间特征及声能量空间指向性。
In order to improve the computational efficiency and accuracy of transient noise of underwater structures, an approximate prediction method for transient noise based on impulse response is proposed. This method is applicable to the prediction of transient radiated noise when the normal vibration velocity of a rigid structure surface is known. The impulse response of each element of the structure surface is obtained by solving a pulse point source scattering problem that is reciprocal to the radiation problem using a fast time domain algorithm, and then convolves each impulse response with the corresponding normal vibration velocity signal at that location. Finally, the transient noise field is calculated by weighted summation of the convolution results using the unit area as a weight. Using two typical analytical models, the correctness of the method is verified by comparing it with the time domain analytical solution. For a tube array structure embedded in a circular baffle, the approximate prediction method is used to calculate the transient radiated noise under a certain normal vibration velocity boundary condition. Considering the geometric structure of the model, the temporal characteristics of the radiated noise signal and the spatial directionality of the acoustic energy at the investigated field point are analyzed.
2024,46(7): 57-64 收稿日期:2023-4-28
DOI:10.3404/j.issn.1672-7649.2024.07.011
分类号:TB532
作者简介:张逸豪(1997-),男,硕士研究生,研究方向为水下结构瞬态噪声建模与仿真
参考文献:
[1] 张勇, 张福民, 刘庆亮, 等. “深海一号”载人潜水器支持母船水下辐射噪声控制关键技术[J]. 舰船科学技术, 2022, 44(10): 49-54.
ZHANG Y, ZHANG F M, LIU Q L, et al. Research on key technologies of underwater radiated noise control of Shen Hai 1 manned submersible supporting ship[J]. Ship Science and Technology, 2022, 44(10): 49-54.
[2] 张峻铭. 水下瞬态声源声能量计算与测量方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[3] 彭志. 水下目标声散射频域/时域特性仿真及应用研究[D]. 武汉: 华中科技大学, 2020.
[4] HU F Q, PIZZO M E, NARK D M. On a time domain boudary integral equation formulation for acoustic sacttering by rigid bodies in uniform mean flow[J]. Journal of the Acoustical Socirty America, 2017, 142: 3624-3636.
[5] 刘佳琪, 郭永超, 朴胜春. 海洋涡旋地震成像的时域有限差分仿真[J]. 声学技术, 2022, 41(3): 426-431.
[6] 庞福振, 王洪富, 缪旭弘, 等. 瞬态冲击载荷下双层加筋圆柱壳水下声辐射研究[C]//第十八届船舶水下噪声学术讨论会论文集. 中国昆明, 2021.
PANG F Z, WANG H F, MIAO X H, et al. Study on underwater acoustic radiation of double stiffened cylindrical shells under transient impact loading[C]//Proceedings of the 18th Symposium on Ship Underwater Noise. Kunming, China, 2021.
[7] 温华兵, 吴俊杰, 马正刚, 等. 浮冰碰撞下船舶舱室瞬态噪声分析及控制[J]. 中国造船, 2020, 61(3): 121-130.
[8] BENNETT C L, MIERAS H. Time domain integral equation solution for acoustic scattering from fluid targets[J]. Journal of the Acoustical Socirty America, 1981, 69(5): 1261-1265.
[9] WU S F. Transient sound radiation from impulsively accelerated bodies[J]. Journal of the Acoustical Socirty America, 1993, 94(1): 542-553.
[10] FAHY F J. Some applications of the reciprocity principle in experimental vibroacoustics[J]. Acoustical Physics, 2003, 49(2): 217-229.
[11] GAUNAURD G C, HUANG H. Acoustic scattering by a spherical body near a plane boundary[J]. Journal of the Acoustical Socirty America, 1994, 96(4): 2526-2536.