圆碟形水下滑翔机是一种新型的水下滑翔机,耐压壳体则是滑翔机的重要组件。本文主要研究在不同水深下机身直径、机身高度与机身表面饱和度对耐压壳体表面变形与压力分布情况的影响。通过有限元分析表明在100~300 m水深范围内应减小机身直径,从而降低机身的最大变形量和最大应力。随着机身高度的增加,最大变形量和最大应力的变化规律是先减后增,且随着工作水深的增加,这种趋势越发明显。对于不同机身表面饱和度的圆碟型水下滑翔机,其外壳的最大变形和最大应力分布规律并不统一,机身饱和度较低的圆碟形滑翔机的综合性能较优。本文分析结果可为圆碟形滑翔机在不同深度下的外形设计提供参考。
The disk-shaped underwater glider (DSUG) is a new type of underwater glider, and the pressure hull is an important component of the glider. In this paper, the effects of shell diameter, shell height and shell surface saturation on the surface deformation and pressure distribution of the pressure hull are mainly studied. Analysis results show that diameter of the shell should be reduced in the water depth range of 100m~300m so as to reduce the maximum deformation and maximum stress. With the increase of the height of the shell, the maximum deformation and maximum stress decrease first and then increase, and this trend becomes more obvious with the increase of the working water depth. The maximum deformation and stress distribution of the shell of DSUG with different shell surface saturation are not uniform. The comprehensive performance of circular disc gliders with lower fuselage saturation is superior. The results of this paper can provide a technical reference for the shape design of DSUGs at different depths.
2024,46(7): 65-73 收稿日期:2023-4-6
DOI:10.3404/j.issn.1672-7649.2024.07.012
分类号:U674.941
基金项目:江苏省高层次创新创业人才引进计划(JSSCBS20211001)
作者简介:熊仲营(1985-),男,博士,研究方向为流动控制、仿生设计、多目标优化设计等
参考文献:
[1] 沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.
SHEN Xin-rui, WANG Yan-hui , YANG Shao-qiong, et al. Development of underwater gliders: an overview and prospect[J]. Journal of Unimanned Undersea System 2018, 26(2): 89-106.
[2] LEONARD N E, PALEY D A, LEKIEN F, et al. Collective motion, sensor networks, and ocean sampling[J]. Proceeding of the IEEE, 2007, 95(1): 48-74.
[3] NAKAMURA M, ITO Y, INADA M, et al. Development of disk type underwater glider for virtual mooring: Part 3, Construction of prototype vehicle and field experiments[J]. Journal of the Japan Society of Naval Architects& Ocean Engineers, 2013, 18: 157-166.
[4] WOODS, ALLENT, KUHNS, et al. The development of an autonomous underwater powered glider for deep-sea biological, chemical and physical oceanography[C]//Oceans. Aberdeen, UK: IEEE, 2007, 4302217.
[5] 俞铭华, 王仁华, 王自力, 等. 深海载人潜水器有开孔耐压球壳的极限强度[J]. 中国造船, 2005(4): 92-96.
YU Min-hua, WANG Ren-hua, WANG Zi-Li, et al. Deep-sea manned submersibles have the ultimate strength of a perforated pressure-resistant ball shell[J]. Shipbuilding of China, 2005(4): 92-96.
[6] 张代雨, 王志东, 凌宏杰, 等. 基于FFD和轴变形方法的翼身融合水下滑翔机外形参数化建模[J]. 舰船科学技术, 2021, 43(3): 89-92+125.
ZHANG Dai-yu, WANG Zhi-dong, LING Hong-jie, et al. Shape parameterization of blended-wing-body underwater glider based on FFD and axis deformation method[J]. Ship Science and Technology, 2021, 43(3): 89-92+125.
[7] 董华超, 王鹏, 张益进. 翼身融合水下滑翔机舱体-骨架耦合 结构的离散优化设计[J]. 中国舰船研究, 2021, 16(4): 70-78.
DONG H C, WANG P, ZHANG Y J. Discrete optimization design for cabin-skeleton coupling structure of blended-wingbody underwater glider[J]. Chinese Journal of Ship Research, 2021, 16(4): 70-78.
[8] 李天博, 王鹏, 孙斌, 等. 一种联翼式水下滑翔机外形优化设计方法[J]. 哈尔滨工业大学学报, 2019, 51(4): 26-32.
LI Tianbo, WANG Peng, SUN Bin, et al. A shape optimization design method of the joined-wing underwater glider[J]. Journal of Harbin Institute of Technology, 2019, 51(4): 26-32.
[9] 张宁, 王鹏, 宋保维. 基于改进型 Kriging-HDMR 的翼身融合水下滑翔机外形优化设计[J]. 水下无人系统学报, 2019, 27(5): 496-502.
ZHANG Ning, WANG Peng, SONG Bao-wei. Shape Optimization for blended-wing-body underwater glider using improved Kriging-HDMR[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 496-502.
[10] 刘德良, 曹淑华, 王天霖, 等. 碟形水下滑翔器耐压壳的结构优化[J]. 大连海事大学, 2018, 37(3): 1-7.
LIU De-liang, CAO Shu-hua, WANG Tian-lin, et al. Optimized design of the pressure-proof shell of disk-shaped underwater gliders[J]. Dalian Maritime University, 2018, 37(3): 1-7.
[11] 甄春博, 邱吉廷, 英扬, 等. 基于组合优化算法的碟形水下滑翔机结构优化[J]. 科学技术与工程, 2019, 19(9): 240-244.
ZHEN Chunbo, QIU Jiting, YING Yang, et al. Structure optimization of round dish-shaped underwater glider based on combinatorial optimization method[J]. Science Technology and Engineering, 2019, 19(9): 240-244.
[12] 何雪浤, 刘新猛, 郭珍珍, 等. 基于正交试验的潜水器耐压壳体的结构优化设计[J]. 机械科学与技术, 2015(1): 8-12.
HE Xuehong, LIU Xinmeng, GUO Zhenzhen, et al. Structural optimization design of underwater vehicle shell based on orthogonal experimen[J]. Mechanical Science and Technology for Aerospace Engineering, 2015(1): 8-12.
[13] 伍莉, 徐治平, 张涛, 等. 球形大深度潜水器耐压壳体优化设计[J]. 船舶力学, 2010, 14(5): 509-515.
WU Li, XU Zhi-ping, ZHANG Tao, et al. Optimum design of spherical deep—submerged pressure hull[J]. Journal of Ship Mechanics, 2010, 14(5): 509-515.
[14] 程妍雪, 庞永杰, 杨卓懿, 等. 基于径向基神经网络模型的耐压壳 6σ 设计[J]. 上海交通大学学报, 2014, 48(4): 493-497.
CHENG Yan-xue, PANG Yong-jie, YANG Zhuo-yi, et al. 6σ design for pressurized cylindrical shells based on RBF[J]. Journal of Shanghai Jiaotong University, 2014, 48(4): 493-497.
[15] 张凡. 碟形水下滑翔机结构稳定性与强度研究[D]. 大连: 大连海事大学, 2017.
[16] 于鹏垚, 沈聪, 王天霖, 等. 圆碟形水下滑翔机外形设计研究[J]. 中国造船, 2018, 59(4): 42-50.
YU Peng-yao, SHENG Cong, WANG Tian-lin, et al. Design of disc-shaped underwater glider[J]. Shipbuilding of China, 2018, 59(4): 42-50.
[17] 甄春博, 王强, 王晓旭, 等. 基于参数化方法的圆碟形水下滑翔机结构轻量化设计[J]. 机械设计与制造, 2021(4): 231-234.
ZHENG Chun-bo, WANG Qiang, WANG Xiao-xu et al. The lightweight design for the structure of round disk-shaped underwater glider based on parameterization method[J]. Machinery Design & Manufacture, 2021(4): 231-234.