本文提出基于CMA-ES优化的LQR船舶自主靠泊控制系统,系统化地解决船舶在靠泊过程中涉及的路径规划、最优控制、外界干扰、物理执行结构约束等问题并使用仿真软件实现基于LQR以及基于CMA-ES优化的LQR的自主靠泊控制系统,实验结果表明,基于CMA-ES的优化控制方法能够很好地实现小型船舶的自主靠泊,系统鲁棒性表现良好。
This paper proposes a hybrid method based on LQR and CMA-ES for autonomous berthing control system, which systematically solve the problems involved during the berthing process, such as path planning, optimal control, dynamic environmental interference, physical execution structure constraints, and etc. The autonomous berthing control system based on basic LQR and improved LQR-CMA-ES is achieved and the simulation work shows that the given method can achieve autonomous berthing of ships well and the system has good robustness against the environmental interference.
2024,46(7): 81-87 收稿日期:2023-4-20
DOI:10.3404/j.issn.1672-7649.2024.07.014
分类号:U674.91
基金项目:国家自然科学基金资助项目(51879119);福建省自然科学基金资助项目(2021J01822,2022J01323);福建省科技计划对外合作项目(3502ZCQXT2021007)
作者简介:殷键(1999-),男,硕士研究生,研究方向为交通信息工程及控制
参考文献:
[1] KOSE K, FUKUDO J, SUGANO K, et al. Study on a computer aided manoeuvring system in harbours[J]. Naval Architecture and Ocean Engineering, 1987, 25: 105-113.
[2] MIZUNO N, UCHIDA Y, OKAZAKI T. Quasi real-time optimal control scheme for automatic berthing[J]. IFAC Papers on Line, 2015(16).
[3] ZHANG Q, ZHANG X, IM N. Ship nonlinear-feedback course keeping algorithm based on MMG model driven by bipolar sigmoid function for berthing[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(5): 525-536.
[4] 徐海祥, 朱梦飞, 余文曌, 等. 面向智能船舶的自动靠泊鲁棒自适应控制[J]. 华中科技大学学报(自然科学版), 2020, 48(3): 25-29.
[5] 韩周周. 基于自抗扰-神经网络控制的船舶自动靠泊仿真研究[D]. 大连: 大连海事大学, 2020.
[6] 贾玉鹏, 神和龙, 尹勇, 等. 基于神经网络的无人船自主靠泊模拟研究[J]. 中国航海, 2021, 44(4): 107-111.
[7] WANG S, JIN H, MENG L, et al. Optimize motion energy of AUV based on LQR control strategy[C]//2016 35th Chinese Control Conference (CCC). IEEE, 2016: 4615-4620.
[8] 杨胜飞. 基于协方差矩阵自适应学习机制的多目标优化研究[D]. 贵阳: 贵州大学, 2019.
[9] MAKI A, SAKAMOTO N, AKIMOTO Y, et al. Application of optimal control theory based on the evolution strategy (CMA-ES) to automatic berthing[J]. Journal of Marine Science and Technology, 2020, 25(1): 221-233.
[10] MANIYAPPAN S, UMEDA N, MAKI A, et al. Effectiveness and mechanism of broaching-to prevention using global optimal control with evolution strategy (CMA-ES)[J]. Journal of Marine Science and Technology, 2021, 26(2): 382-394.
[11] MIYAUCHI Y, MAKI A, UMEDA N, et al. System parameter exploration of ship maneuvering model for automatic docking/berthing using CMA-ES[J]. Journal of Marine Science and Technology, 2022, 27(2): 1065-1083.
[12] 《自主货物运输船舶指南(2018)》发布[J]. 船舶标准化工程师, 2018, 51(5): 53.
[13] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. John Wiley & Sons, 2011.
[14] 邵闯. 基于LQR的大型船舶操纵运动控制研究[D]. 上海: 上海交通大学, 2017.
[15] BRASEL M. ADATPIVE LQR control system for the nonlinear 4-DoF model of a container vessel[C]//2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR). IEEE, 2013: 711-716.
[16] FARZANEGAN B, MALEKIZADEH H, GHASSEMI H, et al. Control system design for a surface effect ship by linear-quadratic regulator method[J]. Journal of Marine Engineering, 2017, 13(25): 47-56.
[17] 田涛. 基于鲁棒最优控制的舵减摇控制系统研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[18] ZHAO Y, ZHANG Z, WANG J, et al. Fin-rudder joint control based on improved linear-quadratic-regulator algorithm[J]. IEEE Access, 2022: 1.
[19] 陈佳云. 基于改进的CMA-ES的仿真足球机器人的行走优化[D]. 南京: 南京邮电大学, 2020.
[20] MAKI A, SAKAMOTO N, AKIMOTO Y, et al. On broaching-to prevention using optimal control theory with evolution strategy (CMA-ES)[J]. Journal of Marine Science and Technology, 2021, 26(1): 71-87.
[21] MAKI A, AKIMOTO Y, NAOYA U. Application of optimal control theory based on the evolution strategy (CMA-ES) to automatic berthing (part: 2)[J]. Journal of Marine Science and Technology, 2021, 26(3): 835-845.
[22] AKIMOTO Y, MIYAUCHI Y, MAKI A. Saddle point optimization with approximate minimization oracle and its application to robust berthing control[J]. ACM Transactions on Evolutionary Learning and Optimization, 2022, 2(1): 1-32.
[23] MIYAUCHI Y, SAWADA R, AKIMOTO Y, et al. Optimization on planning of trajectory and control of autonomous berthing and unberthing for the realistic port geometry[J]. Ocean Engineering, 2022, 245: 110390.
[24] FOSSEN T I. A nonlinear unified state-space model for ship maneuvering and control in a seaway[J]. International Journal of Bifurcation and Chaos, 2005, 15(9): 2717-2746.
[25] 张显库, 张国庆. 船舶港内掉头操纵的简捷鲁棒控制[J]. 中国航海, 2014, 37(2): 31-34.
[26] YASUO Y. Study on mathematical model of steering motion in shallow water (Part 2): fluid forces acting on main hull during low-speed steering[J]. Journal of Kansai Shipbuilding and Ocean Engineering, 1988: 77-84.