随着海上风机由近海进入深海,低功率的风机不再满足海上发电需求,需要设计出新的海上浮式平台来支撑更大功率的风机。基于频域与时域的分析方法,运用AQWA软件,对一种新型10 MW浮式平台在风、浪、流联合作用下的水动力性能进行研究。通过对不同浪向角下幅值响应算子(RAO)、附加质量、运动响应以及系泊张力的计算,结果表明,平台垂荡、横摇和纵摇的固有周期可以有效避开海上波浪能量集中的周期范围;在极限工况下纵荡、纵摇以及垂荡的最值分别为16.83 m、11.81°以及?6.213 m,说明有着良好的运动性能;系泊缆的安全系数为1.92,于允许安全系数1.67,能够保证平台安全运行。
As offshore wind turbines move into deeper waters, low-power turbines are no longer sufficient to meet the increasing demand for maritime power generation. Thus, new offshore floating platforms need to be designed to support larger power wind turbines. In order to assess the feasibility and safety of a newly proposed 10 MW floating platform, the AQWA software was employed to conduct hydrodynamic analysis of the platform under combined wind, wave and current actions. Through the calculation of the amplitude response operator (RAO), added mass, motion response, and mooring tension under different wave direction, it is found that the natural periods of the platform heave, roll and pitch meet the natural periods of offshore waves; The maximum values of pitch, pitch and heave are 16.83 m, 11.81 and 6.213 m, respectively, indicating its good motion performance. The safety factor of mooring cables is 1.92, which is greater than the allowable value of 1.67, and can ensure the safe operation of the platform.
2024,46(7): 93-97 收稿日期:2023-4-24
DOI:10.3404/j.issn.1672-7649.2024.07.016
分类号:P75
基金项目:扬州市“绿杨金凤计划”高层次创新创业人才引进项目(YZLYJFJH2021CX021)
作者简介:潘伟宸(1995-),男,硕士,工程师,研究方向为船舶与海洋工程
参考文献:
[1] 胡天宇, 朱仁传, 范菊. 海上浮式风机平台弱非线性耦合动力响应分析[J]. 哈尔滨工程大学学报, 2018, 39(7): 1132-1137.
[2] 徐思远, 张淑华. 海上浮式风机平台的水动力分析[J]. 水道港口, 2018, 39(2): 195-199.
[3] 蔡新, 张洪建, 王浩, 等. 面向深远海的新型海上风力机浮式平台水动力性能研究[J]. 中国电机工程学报, 2022, 42(12): 4339-4352.
[4] 袁培银, 赵宇, 王平义, 等. 海上风力发电平台概念设计及系泊系统特性研究[J]. 舰船科学技术, 2017, 39(7): 79-83.
[5] 王禅, 金辉, 王腾. 风浪联合作用下海上TLP浮式风机动态响应分析[J]. 舰船科学技术, 2019, 41(19): 75-79.
[6] 邓小康, 谢文会, 李阳, 等. 一种新型深水浮式平台及其系泊系统动力响应分析[J]. 舰船科学技术, 2021, 43(5): 95-101.
[7] 孔令海, 容学苹, 窦培林, 等. 海上风机四浮筒基础运动响应分析[J]. 舰船科学技术, 2022, 44(17): 90-95.
[8] AZCONA J, VITTORI F. Mooring system design for the 10 MW triple spar floating wind turbine at a 180 m sea depth location [C]//16th Deep Sea Offshore Wind R&D conference. Norway, 2019.
[9] CAO Q, XIAO L, CHENG, Z, et al. Operational and extreme responses of a new concept of 10 MW semi-submersible wind turbine in intermediate water depth: An experimental study[J]. Ocean Engineering, 2020, 217: 108003.
[10] KARIMIRAD M, MICHAILIDES C. V-shaped semisubmersible offshore wind turbine: an alternative concept for offshore wind technology[J]. Renewable Energy, 2015, 83: 126-143.
[11] RODDIER D, CERMELLI C. WindFloat: A floating foundation for offshore wind turbines[J]. Journal of Renewable and Sustainable Energy, 2010, 2: 033104.
[12] 阮胜福, 樊冰, 王涛, 等. 半潜式海上风电平台运动特性研究[J]. 海洋工程装备与技术, 2016, 3(6): 371-375.