针对船舶电力推进系统中六相永磁同步电机所采用传统直接转矩控制技术(DTC)仅采用最外围电压大矢量,会产生较大谐波电流并导致转矩波动大的问题,提出基于虚拟电压矢量合成的模型预测转矩控制策略(V-MPTC),利用α-β子空间中同向的大矢量和中矢量与z1-z2子空间中反向的小矢量和中矢量恰好对应原理,通过适当地调节一个PWM周期内大矢量和中矢量的占空比,可以使z1-z2子空间中的合成电压矢量幅值为0,实现对电机谐波电流和转矩脉动的抑制。同时为了便于硬件系统实现,进行电压矢量中心化以及采取提前2步的预测方法。仿真结果表明,采用V-MPTC控制策略使系统响应速度有所提高,启动转速超调降低,转矩脉动从0.15 N·m降至0.04 N·m,谐波畸变率从68.92%降至10.85%,验证了该方法在船舶电力推进系统中可提高其控制性能。
Aiming at the problem that the traditional direct torque control technology (DTC) of the six-phase permanent magnet synchronous motor in Marine electric propulsion system only employs the outermost voltage large vector, which will produce large harmonic current and lead to large torque fluctuation, a model predictive torque control strategy (V-MPTC) based on virtual voltage vector synthesis is proposed. By using the principle that the large vector and medium vector in the same direction in the α-β subspace correspond to the small vector and medium vector in the z1-z2 subspace in the opposite direction, the amplitude of the synthesized voltage vector in the z1-z2 subspace can be 0 by adjusting the duty ratio of the large vector and medium vector in a PWM period, and the suppression of the harmonic current as well as torque ripple of the motor can be realized. At the same time, in order to facilitate the realization of the hardware system, the voltage vector centralization and the prediction method of two steps in advance are adopted. The simulation results show that the V-MPTC control strategy can improve the system response speed, suppress the start-up speed overdrive, reduce the torque ripple from 0.15 N·m to 0.04 N·m, and decrease the harmonic distortion rate from 68.92% to 10.85%, which proves that the control performance of Marine electric propulsion system can be improved by this method.
2024,46(7): 98-105 收稿日期:2022-11-23
DOI:10.3404/j.issn.1672-7649.2024.07.017
分类号:U664.3
基金项目:工业和信息化部高技术船舶项目
作者简介:张聪(1986-),女,博士,副教授,研究方向为新型推进系统性能优化技术
参考文献:
[1] 李浩, 王川, 郭昊昊, 等. 船舶推进电机运动控制系统仿真研究[J]. 舰船科学技术, 2020, 42(13): 114–119
[2] 刘自程, 李永东, 郑泽东. 多相电机控制驱动技术研究综述[J]. 电工技术学报, 2017, 32(24): 17–29
[3] 张丙楠, 杜博超, 赵天旭, 等. 舰船电力推进电机研究现状与发展综述[J]. 中国电机工程学报, 2022, 42(20): 7608–7623.
[4] 王妍旖. 双三相永磁同步电机模型预测直接转矩控制研究[D]. 哈尔滨:哈尔滨工业大学, 2019.
[5] FENG G, LAI C, KELLY M, et al. Dual three-phase pmsm torque modeling and maximum torque per peak current control through optimized harmonic current injection[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3356–3368
[6] HU Y, ZHU Z Q, ODAVIC M. Comparison of two-individual current control and vector space decomposition control for dual three-phase PMSM[J]. IEEE Transactions on Industry Applications, 2017, 53(5): 4483–4492
[7] 宋文祥, 任航, 杨煜, 等. 双三相永磁同步电机的双矢量模型预测转矩控制[J]. 电机与控制学报, 2022, 26(9): 97–107
[8] 张华强, 秦秀敬, 于亚新, 等. 双三相永磁同步电机直接转矩控制[J]. 电气传动, 2017, 47(2): 3–8
[9] HU H M, XU Z W, LIU X J, et al. Model predictive direct torque control of permanent magnet synchronous motor with reduced torque ripple[C]//IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 2015: 448–449.
[10] 张志锋, 朱春海. 双三相永磁同步电机占空比直接转矩控制[J]. 沈阳工业大学学报, 2020, 42(4): 361–367
[11] GONCALVES P F C, CRUZ S M A, MENDES A M S, et al. Comparison of model predictive control strategies for six-phase permanent magnet synchronous machines[C]//44th Annual Conference of the IEEE Industrial-Electronics-Society (IECON), 2018: 5801–5806.
[12] GONCALVES P F C, CRUZ S M A, MENDES A M S. Multistage predictive current control based on virtual vectors for the reduction of current harmonics in six-phase PMSMs[J]. IEEE Transactions on Energy Conversion, 2021, 36(2): 1368–1377