为构建船舶风险领域及分析其特征,基于船舶自动识别系统(Automatic Identification System, AIS)数据提出一种具有风险级别的船舶领域模型。首先,根据预处理后的AIS数据,获取他船相对于本船的位置。然后,采用椭圆领域边界对船舶相对位置数据进行筛选,同时获取到代表风险级别的临界点,并使用最小二乘法对其进行拟合,从而得到船舶风险领域。最后,利用老铁山水道中149 m、190 m、229 m、300 m船舶的AIS数据对所提方法进行验证,并分析船舶风险领域的特征。结果表明,该方法可以较好地反映船舶的风险级别;在同一风险级别时,不同尺度船舶间的风险领域长、短半轴与船长之比差异较小;风险级别为1的船舶领域边界接近于圆形;他船在本船周围分布的密集程度不同。本研究所提模型对航行安全保障、航行风险研究有一定的参考意义。
To construct a ship risk domain and analyze its characteristics, a ship domain model with risk levels is proposed based on Automatic Identification System (AIS) data. Firstly, the position of other ships relative to the ship is obtained based on the pre-processed AIS data. Then, the elliptical domain boundary is used to filter the relative position data of the ship, and the critical points representing the risk level are obtained and fitted using the least squares method to obtain the ship risk domain. Finally, the proposed method is validated using AIS data of 149 m, 190 m, 229 m, and 300 m ships in the Laotieshan Channel, and the characteristics of the ship risk domain are analyzed. The results show that the method can better reflect the risk level of ships; the ratio of the long and short semi-axes of the risk domain to the length of the ship differs less between ships of different scales at the same risk level; the boundary of the domain of a ship with risk level 1 is close to circular; the density of other ships distributed around the ship is different. The model proposed in this study is a reference for navigation safety and security.
2024,46(7): 141-147 收稿日期:2023-4-17
DOI:10.3404/j.issn.1672-7649.2024.07.023
分类号:U675.7
基金项目:国家自然科学基金资助项目(41861144014)
作者简介:杨家轩(1981-),男,博士,教授,研究方向为交通信息工程及控制、航海安全保障
参考文献:
[1] 徐周华, 牟军敏, 季永清. 内河水域船舶领域三维模型的研究[J]. 武汉理工大学学报(交通科学与工程版), 2004(3): 380-383.
XU Z H, MU J M, JI Y Q. A study of 3D model of ship domain for inland waterway[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2004(3): 380-383.
[2] WANG Y, CHIN H. An empirically-calibrated ship domain as a safety criterion for navigation in confined waters[J]. Journal of Navigation, 2016, 69(2): 257-276.
[3] DINH G H, IM N. The combination of analytical and statistical method to define polygonal ship domain and reflect human experiences in estimating dangerous area[J]. International Journal of e-Navigation and Maritime Economy, 2016, 4: 97-108.
[4] PIETRZYKOWSKI Z, MAGAJ J. Ship domain as a safety criterion in a precautionary area of traffic separation scheme[J]. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 2017, 11(1): 93-98.
[5] 文元桥, 王玉宾, 张帆, 等. 基于AIS数据的船舶领域建模[J]. 中国航海, 2018, 41(4): 1-6.
WEN Y Q, WANG Y B, ZHANG F, et al. Ship domain modeling based on AIS data[J]. Navigation of China, 2018, 41(4): 1-6.
[6] 周田瑞, 邵哲平, 潘家财, 等. 基于AIS数据挖掘的受限水域船舶动态领域研究[J]. 集美大学学报(自然科学版), 2018, 23(1): 33-38.
ZHOU T R, SHAO Z P, PAN J C, et al. Research on dynamic of ship movements in restricted waters based on massive AIS data[J]. Journal of Jimei University (Natural Science), 2018, 23(1): 33-38.
[7] ZHANG L, MENG Q. Probabilistic ship domain with applications to ship collision risk assessment[J]. Ocean Engineering, 2019, 186: 106130.
[8] LIU C, LIU J, ZHOU X, et al. AIS data-driven approach to estimate navigable capacity of busy waterways focusing on ships entering and leaving port[J]. Ocean Engineering, 2020, 218: 108215.
[9] DU L, BANDA O A V, HUANG Y, et al. An empirical ship domain based on evasive maneuver and perceived collision risk[J]. Reliability Engineering & System Safety, 2021, 213: 107752.
[10] PIETRZYKOWSKI Z, WIELGOSZ M. Effective ship domain – Impact of ship size and speed[J]. Ocean Engineering, 2021, 219: 108423.
[11] PAN W, XIE X, BAO T, et al. Ship domain model for ships with restricted maneuverability in busy waters[J]. Journal of Navigation, 2021, 74(3): 673-697.
[12] ZHANG F, PENG X, HUANG L, et al. A spatiotemporal statistical method of ship domain in the inland waters driven by trajectory data[J]. Journal of Marine Science and Engineering, 2021, 9(4): 410.
[13] SILVEIRA P, TEIXEIRA A P, GUEDES SOARES C. A method to extract the Quaternion Ship Domain parameters from AIS data[J]. Ocean Engineering, 2022, 257: 111568.
[14] 杨家轩, 周洋宇, 刘家国. 船间危险驶过持续时间模型及应用分析[J]. 中国舰船研究, 2021, 16(5): 172-180.
YANG J X, ZHOU Y Y, LIU J G. Ship near-miss duration model and application analysis[J]. Chinese Journal of Ship Research, 2021, 16(5): 172-180.
[15] 赵健, 王新建, 高飞德, 等. 基于动态水域网格计算的船舶领域研究[J]. 舰船科学技术, 2017, 39(9): 152-156.
ZHAO J, WANG X J, GAO F D, et al. Research on grid computing in ship domain based on dynamic water[J]. Ship Science and Technology, 2017, 39(9): 152-156.
[16] HANSEN M G, JENSEN T K, et al. Empirical ship domain based on AIS data[J]. Journal of Navigation, 2013, 66(6): 931-940.
[17] DEBNATH A K, CHIN H C. Navigational traffic conflict technique: A proactive approach to quantitative measurement of collision risks in port waters[J]. Journal of Navigation, 2010, 63(1): 137-152.
[18] 张鹏. 基于AIS数据的船舶领域模型统计平台研究[D]. 大连: 大连海事大学, 2016.
[19] 刘超凡, 郭国平, 吴兵, 等. 基于FAHP-云模型的CAPE型船舶内河航行安全评估[J]. 武汉理工大学学报, 2021, 43(7): 29-35+47.
LIU C F, GUO G P, WU B, et al. CAPE-type ship navigation safety assessment based on FAHP-cloud model[J]. Journal of Wuhan University of Technology, 2021, 43(7): 29-35+47.