舰船的航行姿态受到复杂的非线性动力学因素影响,例如水动力、风力、波浪力等。这些因素导致了船舶运动的非线性和不确定性,使得对其航行姿态控制的精度较低。为此,提出考虑多约束条件的舰船航行姿态自适应控制算法。分析舰船在海上航行,构建船舶的低频和高频运动模型;根据舰船航行时的特点建立船舶航行的避障约束、转弯最小半径约束以及控制输入饱和约束,建立以调节能耗最少的舰船航行姿态控制目标函数,并通过径向基函数(Radial Basis Function,RBF)神经网络逼近目标函数,得到无限接近目标函数的船舶航行姿态控制律,完成姿态自适应控制。实验结果表明,该方法能够准确控制舰船航行姿态,控制量输出接近理想状态,在进行姿态控制时最大静态误差仅为0.15°,控制时间以及超调量均较小。
The ship's attitude is affected by complex nonlinear dynamics, such as hydrodynamic force, wind force, wave force and so on. These factors lead to the nonlinear and uncertain motion of the ship, which makes the precision of the attitude control of the ship low. Therefore, an adaptive attitude control algorithm considering multiple constraints is proposed. The low frequency and high frequency motion models of ships are constructed by analyzing their sailing on the sea. Obstacle avoidance constraints, minimum turning radius constraints and control input saturation constraints of ship navigation are established according to the characteristics of ship navigation, and the objective Function of ship navigation attitude control is established to adjust the energy consumption at the least, and the objective function is approached by Radial Basis Function (RBF) neural network. The attitude control law of ship sailing which is close to the objective function is obtained, and the attitude adaptive control is completed. The experimental results show that this method can accurately control the ship's attitude, the output of the control quantity is close to the ideal state, the maximum static error is only 0.15°, and the control time and overshoot are small.
2024,46(7): 154-158 收稿日期:2024-1-2
DOI:10.3404/j.issn.1672-7649.2024.07.025
分类号:TP273
基金项目:辽宁省教育科学“十四五”规划课题资助项目(JG22EB031)
作者简介:刘洋(1975-),女,硕士,讲师,研究方向为控制科学与工程
参考文献:
[1] 罗春艳, 李元, 殷飞, 等. 考虑最优路径的水面清漂船自主导航算法设计[J]. 计算机仿真, 2022, 39(3): 253-257.
LUO Chun Yan, LI Yuan, YIN Fei, et al. Design of autonomous navigation algorithm for surface drifting ship considering optimal path[J]. Computer Simulation, 2022, 39(3): 253-257.
[2] 仲伟波, 杨忠凯, 温景松, 等. 基于自抗扰的双桨单舵水面无人艇航行控制[J]. 中国造船, 2020, 61(1): 167-176.
ZHONG Weibo, YANG Zhongkai, WEN Jingsong, et al. A motion control system based on auto disturbances rejection controller for unmanned surface vessel with double propellers and single rudder [J]. Shipbuilding of China, 2020, 61(1): 167-176.
[3] 刘国海, 李持衡, 沈跃, 等. 基于滑模自抗扰的同步转向高地隙喷雾机姿态控制[J]. 农业机械学报, 2023, 54(3): 180-189+300.
LIU Guo hai, LI Chi heng, SHEN Yue, et al. Attitude control of synchronous steering high gap sprayer based on sliding mode active disturbance rejection[J]. Transactions of Agricultural Machinery, 2023, 54(3): 180-189+300.
[4] 刘佳仑, 谢玲利, 李诗杰, 等. 面向船舶智能航行测试的变稳船控制系统设计[J]. 中国舰船研究, 2023, 18(3): 38-47+74.
LIU Jialun, XIE Lingli, LI Shijie, et al. Design of variable stability ship control system for ship intelligent navigation test[J]. Chinese Journal of Ship Research, 2023, 18(3): 38-47+74.
[5] LIU S , SONG J , ZHANG L. Research on 3-DOF stabilized control system of ship propulsion-assisting sail[J]. Ocean Engineering, 2023, 278(6): 114370.1-114370.18.
[6] XIAO Ning shi, ZHI Gang zhou, ZHOU D. Adaptive fault-tolerant attitude tracking control of rigid spacecraft on lie group with fixed-time convergence[J]. Asian Journal of Control, 2020, 22(1): 423-435.
[7] 何建慧. 输入扰动对波动鳍推进性能影响的研究[J]. 船舶力学, 2020, 24(1): 18-30.
HE Jian hui. Research on the effect of input perturbation on the propulsion performance of an undulating fin[J]. Journal of Ship Mechanics, 2020, 24(1): 18-30.
[8] 刘浩, 赵文涛, 孙朝阳, 等. 无人帆船四自由度运动建模与试验分析[J]. 船舶工程, 2023, 45(7): 9-16.
LIU Hao, ZHAO Wen tao, SUN Chao yang, et al. Four-degree-of-freedom motion modeling and experimental analysis of unmanned sailboat[J]. Marine Engineering, 2023, 45(7): 9-16.