考虑舰船电气设备运行环境干扰信号数据量显著,为实现舰船电气设备选择性抗干扰控制,优化电气设备抗扰效果,研究基于大数据的舰船电气设备选择性抗干扰控制技术。利用电磁辐射检测装置,采集舰船电气设备运行环境干扰信号大数据后,由基于MeanShift聚类的电磁干扰信号识别方法,以均值漂移聚类的方式,判断大规模舰船电气设备运行环境检测信号特征,与已知电磁辐射信号特征之间关系,从而完成电气设备电磁干扰信号聚类识别;针对存在电磁干扰信号的电气设备,使用电磁屏蔽的方式,实现舰船电气设备选择性、针对性的抗干扰控制。实验中,此技术在舰船变压器的电磁辐射干扰控制问题中有效可行。
Considering the significant amount of interference signal data in the operating environment of ship electrical equipment, in order to achieve selective anti-interference control of ship electrical equipment and optimize the anti-interference effect of electrical equipment, research is conducted on selective anti-interference control technology of ship electrical equipment based on big data. By using electromagnetic radiation detection devices to collect big data on interference signals in the operating environment of ship electrical equipment, the MeanShift clustering based electromagnetic interference signal recognition method is used to determine the characteristics of large-scale ship electrical equipment operating environment detection signals and their relationship with known electromagnetic radiation signal characteristics through mean shift clustering, thus completing the clustering recognition of electrical equipment electromagnetic interference signals; For electrical equipment with electromagnetic interference signals, electromagnetic shielding is used to achieve selective and targeted anti-interference control of ship electrical equipment. In the experiment, this technology is effective and feasible in controlling electromagnetic radiation interference in ship transformers.
2024,46(7): 167-170 收稿日期:2023-12-14
DOI:10.3404/j.issn.1672-7649.2024.07.028
分类号:TP391
作者简介:宫占霞(1989-),女,硕士,讲师,研究方向为网络控制系统及控制理论与控制工程
参考文献:
[1] 蒋超利, 冯国利, 方子轩, 等. 舰船电气装备测试性标准初探[J]. 海军工程大学学报, 2023, 35(1): 68-73.
JIANG Chaoli, FENG Guoli, FANG Zixuan, et al. A preliminary study on testability standard of ship electrical equipment[J]. Journal of Naval University of Engineering, 2023, 35(1): 68-73.
[2] 王毅, 周国华, 武晓康, 等. 基于遗传神经网络的舰船磁场等效源重构方法[J]. 哈尔滨工程大学学报, 2023, 44(8): 1313-1318.
WANG Yi, ZHOU Guohua, WU Xiaokang, et al. Equivalent source reconstruction of ship magnetic field based on genetic neural network[J]. Journal of Harbin Engineering University, 2023, 44(8): 1313-1318.
[3] 段一琛, 申晓红, 王海燕, 等. 无监督时频信息结合的舰船辐射噪声信号抗诱饵干扰方法[J]. 兵工学报, 2023, 44(9): 2722-2731.
DUAN Yichen, SHEN Xiaohong, WANG Haiyan, et al. An anti-decoy jamming method of ship-radiated noise signals based on unsupervised time-frequency information fusion[J]. Acta Armamentarii, 2023, 44(9): 2722-2731.
[4] 魏新江, 魏永丽, 张慧凤. 船舶动力定位系统的精细抗干扰控制[J]. 控制与决策, 2022, 37(10): 2593-2599.
WEI Xinjiang, WEI Yongli, ZHANG Huifeng. Elegant anti-disturbance control for dynamic positioning system of ships[J]. Control and Decision, 2022, 37(10): 2593-2599.
[5] 于乐新, 张慧, 龚琳舒, 等. 基于准Karhunen-Loève变换基的字典学习抗距离假目标干扰方法[J]. 中国舰船研究, 2022, 17(2): 228-232.
YU Lexin, ZHANGHUI, GONG Linshu, et al. Countermeasures for range false target jamming based on quasi Karhunen-Loève translate basis diction[J]. Chinese Journal of Ship Research, 2022, 17(2): 228-232.
[6] 钱梦飞, 曹鑫, 刘林, 等. 基于不确定干扰估计器的永磁电机控制研究[J]. 微特电机, 2023, 51(10): 29-34.
QIAN Mengfei, CAO Xin, LIU Lin, et al. Research on Permanent magnet motor control based on uncertainty and disturbance estimator[J]. Micro Electric Motor, 2023, 51(10): 29-34.