为研究现行潜水器耐压结构设计计算方法对超高强度钛合金球壳结构的适用性,本文采用理论和数值方法,以目标结构参数(屈服强度$ {R_{eH}} $≥1 250 MPa,内径$ {R_i} $≥150 mm,工作深度H=11 000 m)的钛合金球壳结构为研究对象,选取最小球壳厚度,计算结构应力和极限承载能力破坏压力,进而与设计计算方法控制标准进行对比。结果表明,在选取球壳厚度时,应在最小厚度计算结果的基础上小量增加球壳厚度,即可使现行设计规则球壳应力条款适用于新型超高强度钛合金球壳结构。
In order to study the applicability of the current design and calculation method of submersible pressure structures for ultra-high strength titanium alloy shell structures, theoretical and numerical methods were adopted in this paper. The titanium alloy shell structures with target structural parameters (yield strength $ {R_{eH}} $≥1 250 MPa, inner diameter $ {R_i} $≥150 mm, working depth H=11 000 m) were selected as the research object, and the minimum shell thickness was selected. The structural stress and ultimate bearing capacity failure pressure were calculated, and then compared with the design calculation method control standard. The results show that when selecting the thickness of the spherical shell, it is necessary to increase the thickness of the spherical shell by a small amount on the basis of the calculation results of the minimum thickness, so that the current design rules of the spherical shell stress clause can be applied to the new ultra-high strength titanium alloy spherical shell structure.
2024,46(8): 48-51 收稿日期:2023-5-4
DOI:10.3404/j.issn.1672-7649.2024.08.009
分类号:U674.941
基金项目:国家重点研发计划资助项目(2021YFC2801804)
作者简介:谢晓忠(1988-),男,高级工程师,研究方向为水下工程结构强度与稳定性
参考文献:
[1] 熊志鑫, 黄志权, 张道兵, 等. 模态缺陷条件下的深潜耐压球壳极限强度[J]. 哈尔滨工程大学学报, 2020, 41(1): 76-80.
[2] 杨华伟. 深海耐压结构健康监测与在线评估技术研究[D]. 北京: 中国舰船研究院, 2018.
[3] 黄志伟, 曹永娣. 钛合金材料在舰船铸件上的应用研究[J]. 舰船科学技术, 2017, 39(6): 192-194.
[4] 钱江, 王怡, 李瑶. 钛及钛合金在国外舰船上的应用[J]. 舰船科学技术, 2016, 38(6): 1-6.
[5] 欧阳吕伟, 叶聪, 李艳青, 等. 大深度潜水器耐压结构强度计算方法[M]. 北京:国防工业出版社, 2022.
[6] 中国船级社. 潜水系统与潜水器入级与建造规范[Z]. 2013.
[7] 欧阳吕伟, 陈鹏, 等. 全海深载人潜水器耐压壳体设计计算规则[R]. CSSRC科技报告, 2018.
[8] 张洪才. Ansys14.0理论解析与工程应用实例[M]. 北京: 机械工业出版社, 2014.