针对含周期单元声学覆盖层的吸声系数计算方法展开研究,提出一种数值加解析的联合方法用于改善计算分析效率。首先,以声阻抗管三水听器双负载法测试原理为基础,建立声管有限元模型并获取覆盖层的等效传递矩阵,结合多层均匀介质声吸收解析理论计算覆盖层吸声系数。为验证算法的准确性,将有限元直接计算结果与数值加解析计算结果对比,结果显示本文算法在大部分频率范围内能准确预报吸声系数,并详细分析了计算误差的产生原因。该方法为有效提高声学覆盖层降噪性能优化提供理论支撑与方法指导。
In this paper, a way of calculating the absorption coefficient of acoustic coat with periodic element is studied, and a combined numerical and analytical method is proposed to improve the efficiency of analysis. Firstly, based on the testing principle of acoustic impedance tube three-hydrophone with double load method, the finite element model of acoustic tube was established and the equivalent transfer matrix was obtained, and the sound absorption coefficient of was calculated based on the analytical theory of multi-layer uniform medium. In order to verify the accuracy, the results of direct finite element calculation and numerical combined analytical calculation are compared. The results show that the proposed algorithm can accurately predict the sound absorption coefficient in most frequency ranges. The causes of calculation errors are also analyzed in detail. This method provides theoretical support and method guidance for optimizing the noise reduction performance of acoustic coat effectively.
2024,46(8): 52-57 收稿日期:2023-5-16
DOI:10.3404/j.issn.1672-7649.2024.08.010
分类号:TB535+.1
基金项目:国家自然科学基金资助项目(52201366)
作者简介:蒋哲伦(1998-),男,硕士研究生,研究方向为振动与噪声预报、声场数值算法
参考文献:
[1] 叶韩峰, 陶猛, 李俊杰. 基于COMSOL的空腔声学覆盖层的斜入射吸声性能分析[J]. 振动与冲击, 2019, 38(12): 213-218.
[2] 罗英勤, 楼京俊, 张焱冰. 含局域共振单元复合材料格栅夹芯结构的吸声性能研究[J]. 振动与冲击, 2022, 41(7): 291-296.
[3] 王佳蓓, 周浩. 局域共振型腔体结构吸声瓦的斜入射吸声特性研究[J]. 振动与冲击, 2022, 41(6): 265-270.
[4] WANG T, LIU J, CHEN M. Underwater sound absorption of a meta-absorption layer with double negativity[J]. Applied Acoustics, 2021, 181: 108182.
[5] YANG H, ZHAO H, YIN J, et al. Hybrid meta-structure for broadband waterborne sound absorption[J]. AIP Advances, 2019, 9(12): 125226.
[6] SONG B H, BOLTON J S. A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials[J]. The Journal of the Acoustical Society of America, 2000, 107(3): 1131-1152.
[7] LIU J, YANG H, ZHAO H, et al. Homogenization of an acoustic coating with a steel backing subject to an obliquely incident sound[J]. The Journal of the Acoustical Society of America, 2022, 152(1): 624-632.
[8] YE C, LIU X, XIN F, et al. Influence of hole shape on sound absorption of underwater anechoic layers[J]. Journal of Sound and Vibration, 2018, 426: 54-74.
[9] 罗英勤, 楼京俊, 张焱冰. 内嵌局域共振型散射体结构的低频吸声性能研究[J]. 振动与冲击, 2022, 41(8): 86-92.
[10] JIA X, JIN G, SHI K, et al. A hybrid acoustic structure for low-frequency and broadband underwater sound absorption[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2022,12:12037.
[11] ASTM E2611-19. Standard test method for normal incidence determination of porous material acoustical properties based on the transfer matrix method[M]. New York: American Society for Testing and Materials, 2019.
[12] SHARMA G S, SKVORTSOV A, MAC Gillivray I, et al. Acoustic performance of periodic steel cylinders embedded in a viscoelastic medium[J]. Journal of Sound and Vibration, 2019, 443: 652-665.
[13] 宋昊, 董天韧, 刘金实. 声子晶体覆盖层吸声机理研究[J]. 舰船科学技术, 2021, 43(23): 99-104.