本文对悬臂梁式局域共振声子晶体的带隙特性进行研究,并提出一种通用的带隙优化设计方法。首先,分析声子晶体的带隙结构和形成机理,发现模态有效质量占比是带隙能否打开的关键因素。其次,基于响应面法对声子晶体的带隙进行优化设计研究,借助参数相关性分析筛选出关键的设计变量,通过最优空间填充设计获取试验点,构建响应面模型进行多目标优化,从而获得能够匹配特定目标频率的带隙优化设计方案。最后,对提出的优化方案进行验证。结果显示,优化后的局域共振单元2条带隙均在目标频率处打开。本研究成果可为局域共振型声子晶体的带隙优化设计提供一种方法和思路。
This article investigates the bandgap characteristics of cantilever beam type local resonance phononic crystals and proposes a universal bandgap optimization design method. Firstly, the band gap structure and formation mechanism of phononic crystals were analyzed, and it was found that the proportion of modal effective mass is a key factor in whether the band gap can be opened. Secondly, based on the response surface method, the optimization design of the band gap of phononic crystals is studied. Key design variables are selected through parameter correlation analysis, and experimental points are obtained through the optimal space filling design. A response surface model is constructed for multi-objective optimization to obtain a band gap optimization design scheme that can match a specific target frequency. Finally, validate the proposed optimization plan. The results show that both bandgaps of the optimized local resonance unit are open at the target frequency. This research achievement provides a method and idea for optimizing the bandgap design of local resonant phononic crystals.
2024,46(8): 58-64 收稿日期:2023-10-20
DOI:10.3404/j.issn.1672-7649.2024.08.011
分类号:TB535
作者简介:孙旭阳(1999-),男,硕士研究生,研究方向为基于声学超材料的减振降噪
参考文献:
[1] 夏益霖, 吴家驹. 航天发射的低频振动环境及其模拟[J]. 强度与环境, 1998(1): 1-8.
XIA Y L, WU J J. Low frequency vibration environment and its simulation during space launch[J]. Intensity and Environment, 1998(1): 1-8.
[2] 吴九汇, 张思文, 沈礼. 螺旋局域共振单元声子晶体板结构的低频振动带隙特性研究[J]. 机械工程学报, 2013, 49(10): 62-69.
WU J H, ZHANG S W, SHEN L. Research on low-frequency vibration band gap characteristics of phononic crystal plate structures with helical local resonance units[J]. Journal of Mechanical Engineering, 2013, 49(10): 62-69.
[3] 夏百战, 杨天智. 声学超材料和声子晶体研究进展[J]. 动力学与控制学报, 2023, 21(7): 1-4.
XIA B Z, YANG T Z. Research progress in acoustic metamaterials and phononic crystals[J]. Journal of Dynamics and Control, 2023, 21(7): 1-4.
[4] TIAN X, CHEN W, GAO R, et al. Merging bragg and local resonance bandgaps in perforated elastic metamaterials with embedded spiral holes[J]. Journal of Sound and Vibration, 2021: 116036.
[5] 刘航. 晶格共振声子晶体及超胞晶格研究[D]. 西安: 陕西师范大学, 2022.
[6] ZHANG Z, ZHANG Z, JIN X. Investigation on band gap mechanism and vibration attenuation characteristics of cantilever beam type power exponent prismatic phononic crystal plates[J]. Applied Acoustics, 2023, 206.
[7] LU K, WU J H, JING L, et al. Flexural vibration bandgaps in local resonance beam with a novel two-degree-of-freedom local resonance system[J]. Epj Applied Physics, 2017, 77(2): 20501.
[8] 邢媛, 张波, 张瑶, 等. 一种新型双振子声子晶体带隙特性研究[J]. 噪声与振动控制, 2023, 43(2): 51-57.
XING Y, ZHANG B, ZHANG Y, et al. Study on the bandgap characteristics of a novel dual oscillator phononic crystal[J]. Noise and Vibration Control, 2023, 43(2): 51-57.
[9] LIU H, SHI Z, WANG Y, et al. A band gap optimization scheme for two-dimensional locally resonant phononic crystal with square spiral rings[J]. Physics Letters, A, 2022: 442.
[10] MA F, XU Y, WU J H. Modal displacement method for extracting the bending wave bandgap of plate-type acoustic metamaterials[J]. Applied Physics Express, 2019, 12(7): 074004.