针对船舶尾轴在实际运行过程中存在挠曲变形过大导致尾轴承润滑不良的问题,提出在轴承内孔设计单斜度的倾斜尾轴承结构。利用计算流体力学(CFD)方法,分别建立轴颈倾斜时水平尾轴承和倾斜尾轴承的有限元模型,在相同轴颈倾斜角和偏心率以及不同转速条件下,计算2种结构尾轴承的静特性参数,对比分析同一转速下,不同结构对润滑静特性的影响,以及相同结构时,静特性参数随转速变化的规律。计算结果表明,相同工况下,倾斜尾轴承的最大油膜压力、承载力、摩擦力、摩擦系数和端泄流量均比水平尾轴承更小。随着转速增加,2种尾轴承的最大油膜压力、承载力、摩擦力和端泄流量均不同程度增加,摩擦系数总体呈减小趋势。相关工作可为船舶尾轴承结构的优化设计提供理论参考,便于工程应用。
Aiming at the problem of poor lubrication of the stern bearing due to excessive deflection and deformation in the actual operation of the ship's tail shaft, the tilting stern bearing structure with a single tilt in the bearing bore was proposed. The finite element models of horizontal stern bearing and tilting stern bearing were established respectively by using computational fluid dynamics (CFD) method. The static characteristics parameters of the stern bearing of two structures were calculated under the same journal tilt angle and eccentricity as well as different rotational speeds, and the effects of different structures on the static characteristics of lubrication at the same rotational speed were compared and analyzed, as well as the laws of the static characteristics parameters changing with rotational speed at the same structure. The calculation results show that under the same working condition, the maximum oil film pressure, load carrying capacity, friction force, friction coefficient and side leakage of the tilting stern bearing are smaller than those of the horizontal stern bearing. With the increase of speed, the maximum oil film pressure, load carrying capacity, friction force and side leakage of both stern bearings increase to different degrees, and the friction coefficient tends to decrease in general. The study results provide a theoretical reference for the optimal design of the stern bearing structure of ships for engineering applications.
2024,46(8): 88-93 收稿日期:2023-4-26
DOI:10.3404/j.issn.1672-7649.2024.08.016
分类号:TH117.2
基金项目:工信部重大专项基础研究资助项目(2017-IV-0006-0043);国家自然科学基金资助项目(51839005);舟山市科技局资助项目(2023C41022)
作者简介:刘虹(1999-),女,硕士研究生,研究方向为流体动力润滑及船舶动力系统性能优化分析
参考文献:
[1] SVERKO D, SESTAN A. Experimental determination of stern tube journal bearing behaviour[J]. Brodogradnja, 2010(2): 61.
[2] 刘正林, 周建辉, 刘宇, 等. 计入艉轴倾角的船舶艉轴承液膜压力分布计算[J]. 武汉理工大学学报, 2009, 31(9): 111-113+131.
[3] 陆金铭, 李儒凡, 倪杰. 船舶推进轴系轴径倾斜对轴承负荷的影响[J]. 江苏科技大学学报(自然科学版), 2015, 29(5): 426-430+442.
[4] 李泽远, 汪骥, 刘玉君, 等. 艉管后轴承倾斜度对轴承负荷的影响研究[J]. 船舶工程, 2018, 40(9): 28-31+80.
[5] 吕芳蕊, 夏康, 塔娜, 等. 以提高最小膜厚为目标的船用水润滑轴承结构优化[J]. 船舶力学, 2022, 26(11): 1680-1693.
[6] 张楠, 王楠, 景敏, 等. 考虑轴颈倾斜的智能水润滑轴承润滑特性分析[J]. 陕西理工大学学报(自然科学版), 2022, 38(3): 1-8.
[7] 李森, 金勇, 罗斌, 等. 考虑轴弯曲的水润滑轴承液膜建模方法[J]. 舰船科学技术, 2022, 44(21): 36-40.
[8] 孙丽军, 薛闯, 张立浩, 等. 倾斜轴颈重载轴承润滑性能分析及试验研究[J]. 润滑与密封, 2016, 41(7): 107-111.
[9] ROSSOPOULOS G N, PAPADOPOULOS C I, LEONTOPOU-LOS C. Tribological comparison of an optimum single and double slope design of the stern tube bearing, case study for a marine vessel[J]. Tribology International, 2020, 150(1).
[10] 中国船级社. 钢质海船入级规范[S]. 2022.
[11] 袁少朋, 郭红, 石明辉. 基于FLUENT的径向滑动轴承紊流润滑特性研究[J]. 润滑与密封, 2022, 47(9): 56-62.
[12] 张直明, 张言羊, 谢友柏, 等. 滑动轴承的流体动力润滑理论[M]. 北京: 高等教育出版社, 1986.