本文采用声固耦合方法模拟水下中远场爆炸产生的冲击波载荷和气泡脉动对双层加筋圆柱壳的冲击响应。从不同工况水下爆炸载荷下的鞭状运动和关键部位冲击响应2个方面,研究了药量、爆距、水深、爆炸方位等参数对双层加筋圆柱壳结构响应的影响。研究表明,在中远场水下爆炸作用下,双层加筋圆柱壳在不同药量和爆距下鞭状运动的位移响应幅值和冲击环境谱加速度幅值变化较大,但其鞭状运动的位移响应曲线的周期变化不大。双层加筋圆柱壳在不同水深下,鞭状运动受到水下载荷周期性影响显著,但谱加速度幅值变化不大。双层加筋圆柱壳在不同爆炸方位下鞭状运动变化和冲击环境谱加速度分布受其影响显著。这项研究旨在为水下中远场爆炸作用下,水下航行体结构的抗冲击特性研究提供数据及理论支撑。
This article uses the acoustic solid coupling method to simulate the shock wave load and bubble pulsation generated by underwater mid to far field explosions on the impact response of a double layer reinforced cylindrical shell. The influence of parameters such as charge weight, explosion distance, water depth and explosion direction on the response of double stiffened cylindrical shells was studied from two aspects of whip movement and impact response of key parts under Underwater explosion loads under different working conditions. The research shows that the displacement response amplitude of the whip motion and the acceleration amplitude of the shock environment spectrum of the double-layer stiffened cylindrical shell under the action of the medium and far field Underwater explosion under different charge weight and detonation distance vary greatly, but the period of the displacement response curve of the whip motion does not change much. The whip like motion of a double layer reinforced cylindrical shell is significantly affected by the periodic underwater load at different water depths, but the amplitude of spectral acceleration does not change much. The whip movement and the spectral acceleration distribution of the shock environment of the double stiffened cylindrical shell under different explosion directions are significantly affected by it. This research aims to provide data and theoretical support for the study of the impact resistance characteristics of underwater vehicle structures under the action of mid to far field underwater explosions.
2024,46(8): 94-103 收稿日期:2023-5-15
DOI:10.3404/j.issn.1672-7649.2024.08.017
分类号:U663.2
作者简介:黄伟佳(1994-),男,硕士,助理工程师,研究方向为爆炸试验与毁伤评估等
参考文献:
[1] 刘文思, 陆越, 周庆飞, 等. 鱼雷近场爆炸复杂载荷及对舰船毁伤模式[J]. 兵工学报, 2021, 42(4): 842-850.
LIU W S, LU Y, ZHOU Q F, et al. Complex load of torpedo near-field explosion and its damage mode to ships[J]. Acta Armamentarii, 2021, 42(4): 842-850.
[2] 金键, 朱锡, 侯海量, 等. 大型舰船在水下接触爆炸下的毁伤与防护研究综述[J]. 爆炸与冲击, 2020, 40(11): 15-39.
JIN J, ZHU X, HOU H L, et al. Review on the damage and protection of large naval warships subjected to underwater contact explosion[J]. Explosion and Shock Waves, 2020, 40(11): 15-39.
[3] COLE R H. Underwater Explosion[M]. Princeton: New Jersey, 1948.
[4] 陈岩武, 孙远翔, 王成. 水下爆炸载荷下舰船双层底部结构的毁伤特性研究[J/OL]. 兵工学报, 2022-09-09.
CHEN Yanwu, SUN Yuanxiang, WANG Cheng. Damage characteristics of ship’s double bottom structure subjected to underwater explosion. Acta Armamentarii, 2022-09-09.
[5] 陈高杰, 沈晓乐, 王树乐, 等. 基于声固耦合法的环肋壳水下冲击数值仿真试验[J]. 兵工自动化, 2015, 34(2): 7-10.
[6] 张迪洲, 何镇宏, 何心怡, 等. 水下爆炸冲击波在圆柱壳结构表面绕射衰减分布[J]. 水下无人系统学报, 2015, 34(2): 7-10.
ZHANG D Z, HE Z H, HE X Y, et al. Diffraction attenuation distribution of underwater explosion shock waves on the surface of a cylindrical structure[J]. Journal of Unmanned Undersea Systems, 2015, 34(2): 7-10.
[7] 张阿漫, 王诗平, 彭玉祥, 等. 水下爆炸与舰船毁伤研究进展[J]. 中国舰船研究, 2019, 14(3): 1-13.
ZHANG A M, WANG S P, PENG Y X, et al. Research progress in underwater explosion and its damage to ship structures[J]. Chinese Journal of Ship Research, 2019, 14(3): 1-13.
[8] 刘建湖. 舰船非接触水下爆炸动力学的理论与应用[D]. 无锡: 中国船舶科学技术研究所, 2002.
[9] 彭玉祥. 改进的无网格计算方法及其在结构流固耦合冲击毁伤中的应用研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019.
[10] REYES A, LEE D, GRAZIANI C, et al. A variable high-order shock-capturing finite difference method with GP-WENO[J]. Journal of Computational Physics, 2019, 381: 189-217.
[11] THOMAS G L. An integrated wave-effects model for an underwater explosion bubble[J]. The Journal of the Acoustical Society of America, 2002, 111: 1584-1601.
[12] 张阿漫. 水下爆炸载荷作用下的船体总强度计算方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2005.
[13] 姚熊亮, 屈子悦, 张乐, 等. 水下爆炸圆柱壳冲击波绕射特性分析[J]. 哈尔滨工程大学学报, 2020, 41(1): 9-16.
YAO Xiong-liang, QU Zi-yue, ZHANG Le, et al. Analysis of the underwater shock wave diffraction characteristics of cylindrical shell[J]. Journal of Harbin Engineering University, 2020, 41(1): 9-16
[14] 刘云龙, 王平平, 王诗平, 等. 水下爆炸作用下舰船冲击毁伤的瞬态流固耦合 FSLAB 软件数值模拟分析[J]. 中国舰船研究, 2022, 17(5): 228-240.
LIU Y L, WANG P P, WANG S P, et al. Numerical analysis of transient fluid-structure interaction of warship impact damage caused by underwater explosion using the FSLAB[J]. Chinese Journal of Ship Research, 2022, 17(5): 228-240.
[15] 张轶凡, 刘亮涛, 王金相, 等. 水下爆炸冲击波和气泡载荷对典型圆柱壳结构的毁伤特性[J]. 兵工学报, 2021, 42(4): 842-850.
ZHANG Y F, LIU L T, WANG J X, et al. Damage characteristics of underwater explosion shock wave and bubble load on typical cylindrical shell structure[J]. Acta Armamentarii, 2021, 42(4): 842-850.
[16] 嵇春艳, 季斌, 郭建廷, 等. 基于声固耦合方法舰船结构冲击响应数值预报研究[J]. 江苏科技大学学报(自然科学版), 2020, 34(2): 1-7.
JI C Y, JI B, GUO J T, et al. Numerical prediction for shock response of ship structures based on acoustic structure coupling method[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2020, 34(2): 1-7.
[17] 辛春亮, 王新泉, 涂建, 等. 远场水下爆炸作用下平板的冲击响应仿真[J]. 弹箭与制导学报, 2017, 37(2): 80-82,94.
XIN C L, WANG X Q, TU J, et al. Numerical simulation of plate response subject to far-field underwater explosion[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2017, 37(2): 80-82,94.
[18] 姚熊亮, 张阿漫, 许维军, 等. 基于ABAQUS软件的舰船水下爆炸研究[J]. 哈尔滨工程大学学报, 2006, 27(1): 37-41.
YAO X Y, ZHANG A M, XU We J, et al. Research on warship underwater explosion with ABAQUS software[J]. Journal of Harbin Engineering University, 2006, 27(1): 37-41.
[19] GIANNAKOUROS J, KARNIADAKIS G E. A spectral element-FCT method for the compressible Euler equations[J]. Journal of Computational Physics, 1994, 115(1): 65-85.
[20] 张阿漫, 任少飞, 李青, 等. 计入气穴的水下爆炸作用下结构流固耦合三维数值模拟 [J]. 应用数学和力学, 2012, 33(9): 1115–1128.
ZHANG A M, REN S F, LI Q, et al. 3-D numerical simulation on the fluid-structure interaction of structure subjected to underwater explosion with cavitation[J]. Applied Mathematics and Mechanics, 2012, 33(9): 1115–1128
[21] GEERS T L. Residual potential and approximate methods for three-dimensional fluid-structure interaction problems[J]. The Journal of the Acoustical Society of America, 1971, 49(5B): 1505-1510.
[22] GEERS T L. Doubly asymptotic approximations for transient motions of submerged structures[J]. The Journal of the Acoustical Society of America, 1978, 64(5): 1500-1508.
[23] GEERS T L, Hunter K S. An integrated wave-effects model for an underwater explosion bubble[J]. The Journal of the Acoustical Society of America. 2002, 111(4): 1584-1601.
[24] GEERS T L, PARK C K. Optimization of the G & H bubble model[J]. Shock and Vibration. 2005, 12(1): 3-8.