针对复杂运行环境扰动导致水下航行器轨迹跟踪结果产生偏差的问题,研究船用水下航行器移动轨迹自动跟踪方法。构建船用水下航行器空间运动模型(包含运动学模型与动力学模型),设计船用水下航行器移动轨迹自动跟踪控制器,其中主要包含自适应可变参滑模控制器与扰动观测器两部分,利用扰动观测器在复杂运行环境下未知扰动的准确观测;在扰动观测器的基础上,设计自适应可变参滑模控制器,滑模控制器构建误差滑模面的同时,在当前水下环境未知扰动估计结果的影响下获取预期的虚拟控制,并针对指数项趋近系数造成的周期振动问题,将指数项趋近系数转换为自适应可变参。实验结果显示,该方法能够有效实现船用水下航行器移动轨迹自动跟踪过程中位置与速度的准确跟踪。
In response to the problem of deviation in the trajectory tracking results of underwater vehicles caused by disturbances in complex operating environments, this paper studies the automatic tracking method for the movement trajectory of underwater vehicles on ships. Construct a spatial motion model for underwater vehicles (including kinematic and dynamic models), design an automatic tracking controller for the movement trajectory of underwater vehicles, which mainly includes two parts: an adaptive variable parameter sliding mode controller and a disturbance observer, and use the disturbance observer to accurately observe unknown disturbances in complex operating environments; On the basis of disturbance observer, an adaptive variable parameter sliding mode controller is designed. The sliding mode controller constructs an error sliding mode surface and obtains the expected virtual control under the influence of unknown disturbance estimation results in the current underwater environment. To address the periodic vibration problem caused by the exponential approach coefficient, the exponential approach coefficient is converted into an adaptive variable parameter. The experimental results show that this method can effectively achieve accurate tracking of position and velocity during the automatic tracking process of underwater vehicle movement trajectory on ships.
2024,46(8): 118-121 收稿日期:2023-8-8
DOI:10.3404/j.issn.1672-7649.2024.08.021
分类号:TP273
作者简介:薛永春(1985-),男,讲师,研究方向为机械结构设计
参考文献:
[1] 谢天奇, 李晔, 姜言清, 等. 欠驱动自主水下航行器移动式回收控制及视景仿真[J]. 哈尔滨工程大学学报, 2023, 44(9): 1501-1509.
XIE Tianqi, LI Ye, JIANG Yanqing, et al. Mobile docking control and visual simulation of under actuated autonomous underwater vehicle[J]. Journal of Harbin Engineering University, 2023, 44(9): 1501-1509.
[2] 滕建平, 梁霄, 陶浩, 等. 无人水下航行器全局路径规划及有限时间跟踪控制[J]. 上海海事大学学报, 2022, 43(1): 1-7.
TENG Jianping, LIANG Xiao, TAO Hao, et al. Global path planning and finite-time tracking control of unmanned underwater vehicles[J]. Journal of Shanghai Maritime University, 2022, 43(1): 1-7.
[3] 郭琳钰, 高剑, 焦慧锋, 等. 基于RBF神经网络的自主水下航行器模型预测路径跟踪控制[J]. 西北工业大学学报, 2023, 41(5): 871-877.
GUO Linyu, GAO Jian, JIAO Huifeng, et al. Model predictive path following control of underwater vehicle based on RBF neural network[J]. Journal of Northwestern Polytechnical University, 2023, 41(5): 871-877.
[4] 冯鑫, 于双和. 基于滑模预测控制的水面无人船轨迹跟踪研究[J]. 电光与控制, 2023, 30(9): 92-98.
FENG Xin, YU Shuanghe. Trajectory tracking of unmanned surface vessels based on sliding mode predictive control[J]. Electronics Optics & Control, 2023, 30(9): 92-98.
[5] 李文魁, 周铸, 宦爱奇, 等. 自主水下航行器自适应S面三维轨迹跟踪的仿真验证[J]. 中国舰船研究, 2022, 17(4): 38-46+91.
LI Wenkui, ZHOU Zhu, HUAN Aiqi, et al. Simulation and verification of an adaptive S-plane three-dimensional trajectory tracking control for autonomous underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(4): 38-46+91.
[6] 李娟, 王佳奇, 丁福光. 基于反馈线性化的AUV三维轨迹跟踪滑模控制[J]. 哈尔滨工程大学学报, 2022, 43(3): 348-355.
LI Juan, WANG Jiaqi, DING Fuguang. Sliding mode controller for three-dimensional trajectory tracking of AUV based on feedback linearization[J]. Journal of Harbin Engineering University, 2022, 43(3): 348-355.