有源雷达天线集成避雷针系统的雷击瞬态电磁场分布和雷电感应耦合特性是其进行雷击防护的基础。建立集成系统的三维电磁仿真模型,计算分析系统的雷击瞬态电磁场分布特性,发现天线内部雷击瞬态电磁场在靠近内表面部分相对较大,之后向中心部分快速衰减,天线阵面采用网状结构比采用栅格结构的电磁场屏蔽效果约强2个数量级。进一步通过开展实型天线集成避雷针系统模拟雷击试验,获取了天线系统内部不同端口的感应电压,结果显示,在天线上电状态下内部线缆的感应电压较不上电状态时高,当线缆紧贴天线舱内壁时,其感应电压较悬空布线时的感应电压分别降低了48.1%、68.9%和90.7%。本文取得的相关结果可为有源雷达天线集成避雷针系统的雷电电磁防护设计提供参考。
An electromagnetic simulation model of the radar antenna system integrated with lightning rod is established here for studying the lightning induction coupling characteristics of the system. The distribution characteristics of the lightning transient electromagnetic field of the system were studied. The lightning induced voltage and current of different cables inside the antenna system is analyzed by conducting experiments. The results show that the lightning transient electromagnetic field beneath the internal surface of the system is relatively large and decays rapidly toward the center. The shielding effect of the antenna array with grid structure is better than that of the antenna array with strip structure. When the antenna system is powered, the cable induced voltage is greater than that when the antenna system is powered off. When the cable is tightly attached to the inner wall of the antenna system, the induced voltage is reduced by 48.1%, 68.9%, and 90.7%, compared to the induced voltage when the cable is suspended. The relevant research results can provide reference for the lightning protection design of the radar antenna system integrated with lightning rod.
2024,46(8): 130-136 收稿日期:2023-5-6
DOI:10.3404/j.issn.1672-7649.2024.08.024
分类号:TN821
作者简介:宋青青(1968-),女,高级工程师,研究方向为雷达总体技术
参考文献:
[1] 石亚宁. 浅析雷电灾害的影响以及预防[J]. 科技情报开发与经济, 2008, 18(23): 156-158.
SHI Y N. Analysis on the impact and prevention of lightning disaster[J]. Science and Technology Information Development and Economy, 2008, 18(23): 156-158.
[2] 郑生全, 侯冬云, 李迎, 等. 舰船系统的雷电防护设计[J]. 河北科技大学学报, 2011, 32(S1): 178-182.
ZHENG S Q, HOU D Y, LI Y, et al. Lightning protection design of ship system[J]. Journal of Hebei University of Science and Technology, 2011, 32(S1): 178-182.
[3] 郑生全, 吴晓光, 朱英富. 舰船平台强电磁脉冲威胁与防护要求[J]. 微波学报, 2010, 26(S2): 101-104.
ZHENG S Q, WU X G, ZHU Y F. Threat and protection requirements of strong electromagnetic pulse on ship platform[J]. Journal of Microwaves, 2010, 26(S2): 101-104.
[4] 张勇, 周蜜, 金祖升, 等. 舰船雷电波形与防护试验研究[J]. 微波学报, 2022, 3865-70.
ZHANG Y, ZHOU M, JIN Z S, et al. Experimental study on ship lightning waveform and protection[J]. Journal of Microwaves, 2022, 38 65-70.
[5] 和伟, 郭丽艳. 建筑物内的雷电电磁场[J]. 云南师范大学学报(自然科学版), 2003, 23(6): 45-48.
HE W, GUO L Y. Lightning electromagnetic fields in buildings[J]. Journal of Yunnan Normal University (Natural Science Edition), 2003, 23(6): 45-48.
[6] NIE B, DU P, YU Y, et al. Study of the shielding properties of enclosures wth apertures at higher frequencies using the transmission-line modeling method[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(1): 73-81.
[7] LIU E, DU P, NIE B. An extended analytical formulation for fast prediction of shielding effectiveness of an enclosure at different observation points with an off-axis aperture[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(3): 589-598.
[8] F G, C G, L H. Study of numerical simulation of the lightning indirect effects on helicopter[C]// 2015 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM), 2015.
[9] 李茜华, 陈曦, 刘贺楠, 等. 飞行器雷击瞬态电磁响应数值仿真[J]. 中国舰船研究, 2018, 13(2):140-148.
LI X H, CHEN X, LIU H L, et al. Numerical simulation of aircraft lightning transient electromagnetic response[J]. Chinese Journal of Ship Research, 2018, 13(2):140-148.
[10] 黄瑞涛, 段艳涛, 石立华, 等. 金属柱体雷电间接效应的回路导体仿真分析[J]. 中国舰船研究, 2018, 13(S1): 66-70.
HUANG R T, DUAN Y T,SHI L H, et al. Circuit conductor simulation analysis of indirect effect of lightning on metal cylinder[J]. Chinese Journal of Ship Research, 2018, 13(S1): 66-70.
[11] 刘恩博, 杜平安, 周元, 等. 以PCB为干扰源的带孔机箱电磁辐射特性仿真研究[J]. 电子学报, 2015, 43(3) 611-614.
LIU E B, DU P, ZHOU Y, et al. Simulation study on electromagnetic radiation characteristics of perforated chassis with PCB as interference source[J]. Acta Electronica Sinica, 2015, 43(3) 611-614.
[12] 刘恩博, 王丹丹, 陈珂, 等. 带缝隙腔体电磁谐振特性的仿真分析[J]. 中国科技论文, 2016, 11(16): 1808-1812.
LIU E B, WANG D D, CHEN K, et al. Simulation analysis of electromagnetic resonance characteristics of cavity with slot[J]. China Sciencepaper, 2016, 11(16): 1808-1812.
[13] HOTCHKISS R W, HAA A T. Electric ship surge environment[C]//2007 IEEE Electric Ship Technologies Symposium, 2007.
[14] 张冬晓, 陈亚洲, 田庆民, 等. 某型无人机系统雷电脉冲磁场效应[J]. 强激光与粒子束, 2015, 27(10): 183-188.
ZHANG D X, CHEN Y Z, TIAN Q M, et al. Lightning pulse magnetic field effect of a certain type of UAV system[J]. High Power Laser and Particle Beams, 2015, 27(10): 183-188.
[15] NICOLOPOULOU E P, ALEXANDROU A C, GEORGOPOULOS M F, et al. Investigation of lightning incidence on ships[C] //33rd International Conference on Lightning Protection (ICLP), 2016.
[16] APRA M, D'AMORE M, GIGLIOTTI K, et al. Lightning indirect effects certification of a transport aircraft by numerical simulation[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(3): 513-523.
[17] THOMSON E M. A critical assessment of the US code for lightning protection of boats[J]. IEEE Transactions on Electromagnetic Compatibility, 1991, 33(2): 132-138.
[18] 赵靳生. 船舶的雷击事故分析及对策[J]. 城市建设理论研究(电子版), 2014(7):1-4.
ZHAO J S. Analysis and countermeasures of ship lightning accidents[J]. Urban Construction Theory Research (Electronic Version), 2014(7):1-4.
[19] 靳嘉嘉, 司晓亮, 汪友华, 等. 飞机电缆雷电间接效应的耦合特性仿真研究[J]. 电工技术, 2018(1):20-23.
JIN J J, SI X L, WANG Y H, et al. Simulation study on coupling characteristics of indirect lightning effects of aircraft cables[J]. Electric Engineering, 2018(1):20-23.
[20] 郑生全, 温定娥, 刘其凤, 等. 屏蔽电缆的电磁脉冲时域耦合特性研究[J]. 中国舰船研究, 2011, 6(1): 56-63.
ZHENG S Q, WEN D E, LIU Q F, et al. Study on the time-domain coupling characteristics of electromagnetic pulse in shielded cables[J]. Chinese Journal of Ship Research, 2011, 6(1): 56-63.