为抑制船舶图像目标检测受光照变化、海浪干扰、背景杂波等因素的影响,设计视觉显著性和稀疏表示学习相融合的船舶图像目标检测方法,提升船舶图像目标检测效果。利用船舶图像建立船舶图像字典;通过稀疏表示算法结合字典,稀疏编码船舶图像;依据稀疏编码结果,在船舶图像内提取视觉显著图;通过自适应阈值法,分割视觉显著图,得到船舶目标候选区域,缩小船舶目标检测范围;在概率神经网络内,输入船舶目标候选区域,判断其是否为船舶目标,完成船舶图像目标检测。实验证明,该方法可有效稀疏编码船舶图像,并提取视觉显著图;该方法可有效分割视觉显著图;在简单背景与复杂背景下,该方法均可精准检测船舶目标。
In order to suppress the influence of light change, wave interference, background clutter and other factors in ship image target detection, a ship image target detection method combining visual salience and sparse representation learning is studied to improve the ship image target detection effect. Using ship image to build ship image dictionary; The ship image is sparsely encoded by sparse representation algorithm combined with dictionary. Based on sparse coding results, visual significance maps are extracted from ship images. Through the adaptive threshold method, the visual significance map is segmented to obtain the candidate region of ship target and narrow the detection range of ship target. In the probabilistic neural network, the candidate region of the ship target is input to judge whether it is the ship target, and the ship image target detection is completed. Experimental results show that the proposed method can effectively sparsely encode ship images and extract visual significance images. The method can effectively segment the visual significance map. This method can accurately detect ship targets in both simple and complex backgrounds.
2024,46(8): 157-160 收稿日期:2023-8-22
DOI:10.3404/j.issn.1672-7649.2024.08.029
分类号:TP394.1
基金项目:广西图像图形与智能处理重点实验室(桂林电子科技大学)开放基金项目(GIIP2210);国家自然科学基金资助项目(62262007)
作者简介:钟思(1982-),女,硕士,高级工程师,研究方向为计算机应用、图形图像及人工智能。
参考文献:
[1] 谢兆哲, 程永强, 吴昊, 等. 基于Toeplitz矩阵特征值分解的SAR图像舰船目标检测方法[J]. 信号处理, 2023, 39(3): 496-504.
XIE Zhaozhe, CHENG Yongqiang, WU Hao, et al. Ship target detection method in SAR imagery based on eigenvalue decomposition of the Toeplitz matrix[J]. Journal of Signal Processing, 2023, 39(3): 496-504.
[2] 严春满, 王铖. 基于选择性坐标注意力的SAR图像舰船目标检测[J]. 电子学报, 2023, 51(9): 2481-2491.
YAN Chunman, WANG Cheng. Ship target detection in SAR image based on selective coordinate attention[J]. Acta Electronica Sinica, 2023, 51(9): 2481-2491.
[3] 杨曦, 张鑫, 郭浩远, 等. 基于不变特征的多源遥感图像舰船目标检测算法[J]. 电子学报, 2022, 50(4): 887-899.
YANG Xi, ZHANG Xin, GUO Haoyuan, et al. Invariant features based ship detection model for multi-source remote sensing images[J]. Acta Electronica Sinica, 2022, 50(4): 887-899.
[4] 余伟, 尤红建, 胡玉新, 等. 基于多尺度双邻域显著性的高分四号遥感图像运动船舶检测方法[J]. 电子与信息学报, 2023, 45(1): 282-290.
YU Wei, YOU Hongjian, HU Yuxin, et al. Moving ship detection method based on multi-scale dual-neighborhood saliency for GF-4 satellite remote sensing images[J]. Journal of Electronics & Information Technology, 2023, 45(1): 282-290.
[5] 杨亚东, 黄胜一, 谭毅华. 基于低秩和重加权稀疏表示的红外弱小目标检测算法[J]. 应用科学学报, 2023, 41(5): 753-765.
YANG Yadong, HUANG Shengyi, TAN Yihua. Infrared dim and small target detection algorithm based on low-rank and reweighted sparse representation[J]. Journal of Applied Sciences, 2023, 41(5): 753-765.
[6] 闵锋, 刘朋. 改进YOLOv5的SAR图像近海岸舰船目标检测算法研究[J]. 微电子学与计算机, 2023, 40(4): 38-46.
MIN Feng, LIU Peng. Research on the detection algorithm of near-coastal ships in SAR images based on improved YOLOv5[J]. Microelectronics & Computer, 2023, 40(4): 38-46.
[7] 曾祥书, 黄一飞, 蒋忠进. 基于YOLOX网络的SAR图像舰船目标检测[J]. 雷达科学与技术, 2023, 21(3): 255-263.
ZENG Xiangshu, HUANG Yifei, JIANG Zhongjin. Ship target detection in SAR images based on YOLOX[J]. Radar Science and Technology, 2023, 21(3): 255-263.