为提高航行的安全性,通过自动化装置的应用,使船舶能够更好地适应各种复杂的航行环境和任务要求,研究基于DSP的船舶航行自动控制方法。该方法先建立船舶航行非线性数学模型,运用该模型获得船舶在海上航行的横摇、纵摇和艏摇三自由度数据,再以DSP为基础,建立船舶航行控制器,在该控制器的逻辑处理模块将船舶航行非线性数学模型输出结果分别输入到PID优化算法与CMAC神经网络模型内,通过该2个算法得到综合船舶航行自动控制最终参数,并使用DSP模块内PWM和ADC模块将控制参数输入到船舶航行驱动模块内,实现船舶航行自动控制。实验表明,该方法建立的船舶航行非线性数学模型具备较强的有效性,可实现船舶舵角的控制和航向控制,且其控制船舶航行超调量较小,灵敏性好。
In order to improve the safety of navigation and enable ships to better adapt to various complex navigation environments and task requirements through the application of automation devices, a DSP based automatic control method for ship navigation is studied. This method first establishes a nonlinear mathematical model for ship navigation, and uses this model to obtain three degrees of freedom data of lateral and longitudinal sway and bow sway of the ship during sea navigation. Then, based on DSP, a ship navigation controller is established. In the logic processing module of the controller, the output results of the nonlinear mathematical model for ship navigation are input into the PID optimization algorithm and CMAC neural network model, respectively, By using these two algorithms, the final parameters of comprehensive ship navigation automatic control are obtained, and the control parameters are input into the ship navigation drive module using PWM and ADC modules in the DSP module to achieve automatic ship navigation control. The experiment shows that the nonlinear mathematical model of ship navigation established by this method has strong effectiveness, can achieve control of ship rudder angle and heading control, and its control of ship navigation overshoot is small, with good sensitivity.
2024,46(8): 165-168 收稿日期:2023-8-15
DOI:10.3404/j.issn.1672-7649.2024.08.031
分类号:U661
基金项目:抚州市科学技术局科技重点项目(2019DC01)
作者简介:李宏俊(1977-),男,硕士,讲师,研究方向为电子信息工程、信息处理、图形图像处理及工业控制
参考文献:
[1] 王元慧, 王晓乐, 王成龙. 全垫升气垫船安全航行控制技术研究综述[J]. 哈尔滨工程大学学报, 2023, 44(9): 1475-1486.
WANG Yuanhui, WANG Xiaole, WANG Chenglong. Survey on the navigation control technology of air cushion vehicles[J]. Journal of Harbin Engineering University, 2023, 44(9): 1475-1486.
[2] 秦华阳, 陈增强, 孙明玮, 等. 基于扩张状态观测器和反步法的非线性超空泡航行体纵向控制[J]. 控制理论与应用, 2023, 40(2): 373-380.
QIN Huayang, CHEN Zengqiang, SUN Mingwei, et al. Longitudinal control of nonlinear supercavitating vehicle based on extended state observer and back stepping method[J]. Control Theory & Applications, 2023, 40(2): 373-380.
[3] 白涛, 董勤浩, 冯梓昆, 等. 基于强化学习的水下高速航行体纵向运动控制研究[J]. 智能系统学报, 2023, 18(5): 902-916.
BAI Tao, DONG Qinhao, FENG Zikun, et al. Longitudinal motion control of underwater high-speed vehicles based on reinforcement learning[J]. CAAI Transactions on Intelligent Systems, 2023, 18(5): 902-916.
[4] 韩成浩, 马吉林, 刘佳仑, 等. 基于虚拟仿真测试平台的船舶智能航行系统设计及应用[J]. 中国航海, 2023, 46(1): 148-154.
HAN Chenghao, MA Jilin, LIU Jialun, et al. Virtual test platform in design and application of intelligent navigation system[J]. Navigation of China, 2023, 46(1): 148-154.
[5] 刘佳仑, 谢玲利, 李诗杰, 等. 面向船舶智能航行测试的变稳船控制系统设计[J]. 中国舰船研究, 2023, 18(3): 38-47,74.
LIU Jialun, XIE Lingli, LI Shijie, et al. Design of variable stability ship control system for ship intelligent navigation test[J]. Chinese Journal of Ship Research, 2023, 18(3): 38-47,74.
[6] 余文曌, 韩素敏, 徐海祥, 等. 智能船舶路径跟踪自抗扰模型预测控制[J]. 华中科技大学学报(自然科学版), 2023, 51(4): 55-61.
YU Wenzhao, HAN Sumin, XU Haixiang, et al. Auto disturbance rejection model predictive control for intelligent ship' path following[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2023, 51(4): 55-61.