鱼雷减速器具有短时苛刻工况的工作特点,为精确计算齿轮运行时润滑油需求流量,提出一种基于热弹流润滑模型和齿面胶合理论的齿轮润滑油量计算方法,建立斜齿轮热弹流润滑模型,得到齿轮滚滑速度、齿轮齿面油膜厚度等参数,计算齿轮生热功率,基于热弹流润滑计算的齿轮固体表面温度,结合齿轮胶合临界温度,确定给定参数内润滑油最大允许温升,进一步计算出齿轮副润滑油流量。计算得到的减速器齿轮所需供油量,相比较传统机械手册计算结果,能够节约润滑油63.8%。通过试验验证,此方法更适用于短时严苛工况下减速器齿轮的润滑油需求流量计算。
Torpedo reducer has the characteristics of short-time and harsh working conditions. In order to accurately calculate the lubricating oil demand flow of gear during operation, a gear lubricating oil quantity calculation method based on the thermal-elastohydrodynamic (TEHD) lubrication model and the tooth surface gluing theory was put forward. The helical gear TEHD lubrication model was established to obtain the parameters such as the gear rolling speed and the oil film thickness of the gear tooth surface, and the thermal generating power of the gear was calculated. Based on the gear solid surface temperature calculated by TEHD lubrication model, combined with the critical temperature of gear bonding, the maximum allowable temperature rise of lubricating oil within the given parameters was determined, and the lubricating oil flow of gear pair was further calculated. Compared with the calculation result of traditional mechanical manual, the calculated oil supply of reducer gear can save 63.8% of oil flow. The experimental results show that this method is more suitable for the calculation of lubricating oil demand flow of reducer gear under short and severe working conditions.
2024,46(8): 174-179 收稿日期:2023-5-8
DOI:10.3404/j.issn.1672-7649.2024.08.033
分类号:U664.2
作者简介:黄立(1990-),男,硕士,工程师,研究方向为鱼雷热动力
参考文献:
[1] 查志武. 鱼雷热动力技术[M]. 北京: 国防工业出版社, 2006.
[2] 陈光. 高速齿轮喷油润滑流场与温度场仿真研究与应用[D]. 重庆: 重庆大学, 2019.
[3] TOWNSEND D P, AKIN L S. Analytical and experimental spur gear tooth temperature as affected by operating variables[J]. Journal of Mechanical Design, 1981, 103(1): 219-226.
[4] MIHAILIDIS A, PANAGIOTIDIS K. Transient thermo-elastohydrodynamic lubrication of gear teeth[J]. Lubrication Science, 2003, 15(4): 295-310.
[5] XING C, SHAOJUN L. Analysis of Bulk Temperature in high- speed gears based on finite element method[C]//2013 Fourth international conference on digital manufacturing & automation. IEEE, 20 13: 202-206.
[6] YAZDANI M, SOTERIOU M C. A novel approach for modeling the multiscale thermo-fluids of geared systems[J]. International Journal of Heat and Mass Transfer, 2014, 72: 517-530.
[7] LI K, CHEN G, LIU D. Study of the influence of lubrication parameters on gear lubrication properties and efficiency[J]. Industrial lubrication and tribology. 2016;68(6): 647-57.
[8] FERNANDES C M C G, ROCHA D M P, MARTINS R C, et al. Finite element met hod model to predict bulk and flash temperatures on polymer gears[J]. Tribology International, 2018, 120: 255-268.
[9] 汝艳. 低速重载齿轮本体温度场的研究[D]. 合肥: 合肥工业大学, 2007.
[10] 吕亚国, 刘振侠, 路彬, 等. 航空发动机附件机匣热分析研究[J]. 润滑与密封, 2011, 36(10): 62-66.
LU Y G, LIU Z X, LU B, et al. Thermal analysis of aeroengine accessory gearbox[J]. Lubrication Engineering, 2011, 36(10): 62-66.
[11] 王忠达. 基于热流耦合的锥齿轮流场与温度场仿真分析[D]. 长春: 吉林大学, 2015.
[12] 袁光前, 胡云波, 李金库, 等. 燃气轮机齿轮箱齿轮热功率损失及传动效率研究[J]. 机械传动, 2020, 44(2): 121-127.
YUAN G Q, HU Y B, LI J K, et al. Study on thermal power loss and transmission efficiency of gas turbine gearbox[J]. Journal of Mechanical Transmission, 2020, 44(2): 121-127.
[13] 刘蒙, 张强, 刘振, 等. 基于CFD减速器温度场及影响因素分析[J]. 矿山机械, 2020, 48(1): 54-61.
LIU M, ZHANG Q, LIU Z, et al. Analysis on temperature field of teducer and influential factors based on CFD[J]. Mining Processing Equipment, 2020, 48(1): 54-61.
[14] LIU X L, JIANG M, YANG P R, et al. Non-newtonian thermal analyses of point EHL contacts using the Eyring model[J]. Journal of Tribology, 2005, 127(1): 70-81.