管路系统广泛应用于船舶动力、海洋工程、建筑环境等领域,其振动噪声可能会导致设备的失效与破坏。具有弹性波带隙特征的周期性结构设计可在特定频段内实现波的人为调控,有效降低管路结构的低频振动噪声。将周期结构引入一维管路系统,基于布拉格散射和局域共振2种带隙机理,设计具备全频段良好减振性能的周期管路结构。结合传递矩阵法和有限元法,计算了布拉格型管路的能带结构与减振特性。建立引入局域共振单元的周期管路系统有限元模型,计算并分析晶格常数、周期数量、局域振子尺寸等参数对周期管路结构振动特性的影响规律。结果表明,基于声子晶体带隙特性设计的周期管路系统具有优良的减振性能。
Pipeline systems are widely used in ship power, marine engineering, building environment and other fields. Its vibration and noise may lead to equipment failure and destruction. The periodic structural design with elastic wave bandgap characteristics can achieve artificial modulation of waves within specific frequency bands, effectively reducing low-frequency vibration noise of pipeline structures. The periodic structure is introduced into the one-dimensional pipeline, and based on the two band gap mechanisms of Bragg scattering and local resonance, the periodic pipeline structure with good damping property in the whole frequency band is designed. Combining the transfer-matrix method and the finite element method, the bandgap and vibration reduction property of the Bragg type pipeline are calculated. The finite element model of periodic pipeline with local resonance element is established, and the influence of Lattice constant, number of periods, local vibrator size and other parameters on the vibration characteristics of periodic pipeline structure is calculated and analyzed. The results show that the periodic pipeline system designed based on the property of phononic crystal band gap has excellent vibration reduction performance.
2024,46(9): 40-45 收稿日期:2023-06-09
DOI:10.3404/j.issn.1672-7649.2024.09.007
分类号:TB535
基金项目:热能动力技术重点实验室开放基金资助项目(TPL2020003)
作者简介:刘媛(1991 – ),女,硕士,工程师,研究方向为船舶振动噪声控制
参考文献:
[1] SHEN H J, WEN J H, YU D L, et al. Stability of fluid-conveying periodic shells on an elastic foundation with external loads[J]. Journal of Fluids and Structures, 2014, 46: 134-148.
[2] NAKAO M, KATO T, OOWAKU T, et al. Generation of arbitrary pressure pulsation of wide frequency range for flow meter testing in a laminar gas pipeline[J]. Journal of Flow Control, Measurement & Visualization, 2014, 66: 328-340.
[3] 钱德进, 缪旭弘, 贾地. 阻振质量在出海管路减振降噪中的应用[J]. 声学技术, 2010(29): 632-636.
[4] 杜春阳, 郁殿龙, 温激鸿, 等. 含功能梯度材料的周期管路振动特性研究[J]. 振动与冲击, 2018, 37(4): 170-176.
[5] 吴江海, 尹志勇, 王纬波, 等. 船用复合材料管路振动特性试验研究[J]. 舰船科学技术, 2020, 42(7): 85-89+122.
WU J H, YIN Z Y, WANG W B, et al. Experiment analysis on the vibration characteristic of composite pipe[J]. Ship Science and Technology, 2020, 42(7): 85-89+122.
[6] SU Y S, CHEN Y H, FENG Q L, et al. Optimal design of helmholtz muffler for air compressor[J]. Journal of Physics Conference Series, 2020, 7: 233-244.
[7] XIA B Z, CHEN N, XIE L X, et al. Temperature controlled tunable acoustic metamaterial with active band gap and negative bulk modulus[J]. Applied Acoustics, 2016, 112(3): 1-9.
[8] GENG Q, CAI T Y, LI Y M. Flexural wave manipulation and energy harvesting characteristics of a defect phononic crystal beam with thermal effects[J]. Journal of Applied Physics, 2019, 25(3): 035103.
[9] 温激鸿, 郁殿龙, 赵宏刚, 等. 人工周期结构中弹性波的传播—振动与声学特性[M]. 北京: 科学技术出版, 2015.
[10] LI Y F, SHEN H J, ZHANG L K, et al. Control of low-frequency noise for piping systems via the design of coupled gap of acoustic metamaterials[J]. Physics Letters A, 2016, 380 (29/30) : 2322-2328.
[11] SOROKIN S V, ERSHOVA O A. Analysis of the energy transmission in compound cylindrical shells with and without internal heavy fluid loading by boundary integral equations and by Floquet theory[J]. Journal of Sound and Vibration, 2006, 291: 81-99.
[12] KNUDSEN A, SOROKIN S V. Modelling of linear wave propagation in spatial fluid filled pipe systems consisting of elastic curved and straight elements[J]. Journal of Sound and Vibration, 2010, 329: 5116-5146.
[13] 汤璐嘉, 吕延军, 刘成, 等. 局域共振型声子晶体梁的动态模型和带隙[J]. 振动、测试与诊断, 2021, 41(6): 1132-1137+1238.
[14] PARK S, JEON W. Ultra-wide low-frequency band gap in a tapered phononic beam[J]. Journal of Sound and Vibration, 2021, 499(2): 115977.
[15] SHEN H J, WEN J H, YU D L, et al. The vibrational properties of a periodic composite pipe in 3D space[J]. Journal of Sound and Vibration, 2009, 328(1/2): 57-70.
[16] FANG N, XI D, XU J, et al. Ultrasonic metamaterials with negative modulus[J]. Nature Materials, 2006(5): 452-456.