本文运用以雷诺平均N-S方程(RANS)为基础的粘性流 CFD方法,结合MRF多重参考系模型,对某LNG运输及加注船的首尾侧推器粘性流场和水动力进行数值计算,在多种不同航速条件下,研究了在低速航行时船速对侧推器推力性能的影响规律。通过对比分析得出,首尾侧推器的侧推性能及其对船体水动力性能存在很大差别,并且这2个方面的性能对航速的敏感性也存在很大差异;采用独立尾侧推器舱室布局设计的尾侧推装置效率比独立首侧推器高。
In this paper, the viscous flow CFD method based on Reynolds-averaged N-S equations (RANS) and the multiple reference frame model (MRF) are used to numerically calculate the viscous flow field and hydrodynamic forces of the fore and stern thrusters of an LNG carrying and bunkering vessel. The influence of ship speed on the thrust performance of the thrusters at low speeds is studied under various conditions. Through comparative analysis, it is concluded that there are great differences between the hydrodynamical performances of fore and stern thrusters and their sensitivity to ship speed. The efficiency of the independent stern thruster is much higher than that of the independent fore thruster.
2024,46(9): 53-59 收稿日期:2023-07-19
DOI:10.3404/j.issn.1672-7649.2024.09.009
分类号:U661.3
基金项目:国家自然科学基金资助项目( 51109186);浙江省重点研发项目(2021C02184)
作者简介:卢浩南(1998 – ),男,硕士研究生,研究方向为船舶与海洋工程水动力数值预报
参考文献:
[1] 朱永凯, 石峰, 梁斌, 等. LNG运输船首次加注方案[J]. 船海工程, 2023, 52(2): 84-86.
ZHU Yong-Kai, SHI Feng, LIANG Bin, et al. The first refueling scheme of LNG carriers[J]. Ship and Ocean Engineering, 2023, 52(2): 84-86.
[2] 韦晓强, 黄国良, 孙恪成, 等. 海洋石油301船新增加注功能改造方案[J]. 天津科技, 2023, 50(3): 93-97.
WEI Xiao-qiang, HANG Guo-liang, SUN Ke-cheng, et al. New filling function reconstruction scheme of offshore oil ship 301[J]. Tianjin Science and Technology, 2023, 50(3): 93-97.
[3] AHN Y, LEE J, PARK T, et al. Long-term approach for assessment of sloshing loads in LNG carrier, Part I: Comparison of short and long-term approaches[J]. Marine Structures, 2023, 89.
[4] PAK K R, SONG G S, KIM H J, et al. Hull form design for resistance minimization of small-scale LNG bunkering vessels using numerical simulation[J]. International Journal of Naval Architecture and Ocean Engineering, 2020, (12): 856-867
[5] 李高强, 欧阳武. 无轴轮缘侧推器水动力特性及影响因素分析[J]. 舰船科学技术, 2023, 45(7): 126-131.
LI Gao-qiang, OU Yang-wu. Analysis of hydrodynamic characteristics and influencing factors of shaftless wheel rim thruster[J]. Ship Science and Technology, 2023, 45(7): 126-131.
[6] 肖智, 贺伟, 黄菀宸, 等. 槽道式侧推器水动力性能研究进展和展望[J]. 推进技术, 2022, 43(6): 39-53.
XIAO Zhi, HE Wei, HUANG Wan-chen, et al. Research progress and prospect of hydrodynamic performance of channel thruster[J]. Journal of Propulsion Technology, 2022, 43(6): 39-53.
[7] YAN X P, LIANG X X, OUYANG W, et al. A review of progress and applications of ship shaft-less rim-driven thrusters[J]. Ocean Engineering, 2017, 144.
[8] 沈海云. 可调侧推器设计与水动力性能仿真研究[D]. 杭州: 浙江大学, 2012.
[9] 徐周华. 船舶首侧推器适用的船速域[J]. 武汉理工大学学报(交通科学与工程版), 2002(1): 116-119.
XU Zhou-Hua. Ship speed domain for bow thruster[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2002(1): 116-119.
[10] 姚震球, 严周广. 侧向推进器水动力性能数值分析与验证(英文)[J]. 船舶力学, 2012(3): 236-245.
YAO Zhen-Qiu, YAN Zhou-Guang. Numerical analysis and verification of hydrodynamic performance of lateral thruster[J]. Journal of Ship Mechanics, 2012(3): 236-245.
[11] 闫长健. 艏艉侧推器操纵效能仿真研究[D]. 大连: 大连海事大学, 2008.
[12] DONALD E R. Observations on the effect of vessel speed on bow thruster performance[J]. Marine Technology, 1971, 8(l): 93-96.
[13] 藤野正隆, 猿田俊彦, 伊田力, 等. 关于侧推器效能的实验研究[J]. 国外舰船技术(特辅机电设备类), 1979(6): 1-10.
[14] MA Shao-jun, ZHOU Ming-gui, ZOU Zao-jian. Hydrodynamic interaction among hull, rudder and bank for a ship sailing along a bank in restricted waters[J]. Journal of Hydrodynamics, 2013(6): 809-817.
[15] 潘明岩. 导管螺旋桨与舵组合水动力性能模拟研究[D]. 大连: 大连理工大学, 2013.
[16] 刘震宇, 郁程, 杨晨俊. 侧推器CFD计算初步研究[C]// 2013年船舶水动力学学术会议论文集, 2013.
[17] NICMANN U. On the effectiveness of a bow-thruster jet flow[J]. Journal of Ship Research, 1971, 15(3).