海洋环境复杂多变,海上结构物需长期承受随机波浪引起的交变载荷,极易产生疲劳破坏。本文以某海上大尺度异型镂空浮体为研究对象,通过计算分析找出了异形浮体结构容易产生疲劳破坏的位置。为使结构疲劳谱分析计算结果更加准确,本文提出一种数值规则波模拟法,用来计算浮体结构在工作时应力的传递函数。在此基础上,分别采用基于热点应力与名义应力的谱分析方法计算了浮体的疲劳寿命。结果显示,基于热点应力法得到的结构疲劳寿命略低于基于名义应力法得到的疲劳分析结果,更偏保守。以上研究结果可为大型海上浮式结构的设计提供参考。
The marine environment is complex and changeable, and offshore structures need to bear the alternating load caused by random waves for a long time, which is very easy to cause fatigue damage. In this paper, a large-scale special-shaped hollow floating structure is taken as the research object, and the location where the structure is prone to fatigue failure is found through calculation and analysis. In order to make the results of structural fatigue spectrum analysis more accurate, a numerical regular wave simulation method is proposed to calculate the transfer function of structural stress. On this basis, the fatigue life of the floating structure is calculated by using the spectrum analysis method based on hot spot stress and nominal stress respectively. The results show that the fatigue life of the structure based on hot spot stress method is slightly lower than that based on nominal stress method. The above research results can provide reference for the design of large offshore floating structures.
2024,46(9): 99-105 收稿日期:2023-06-21
DOI:10.3404/j.issn.1672-7649.2024.09.017
分类号:U66K
作者简介:张书友(1997 – ),男,硕士研究生,研究方向为环境载荷与结构分析
参考文献:
[1] MATSUISHI M, ENDO T. Fatigue of metals subjected to varying stress[C]//Fukuoka, Japan: Japan Society of Mechanical Engineers, 1968.
[2] RYCHLIK I. A new definition of the rainflow cycle counting method[J]. International Journal of Fatigue 1987, 9(2): 119–121.
[3] DOWLING NE. Fatigue-failure predictions for complicated stress–strain histories[J]. Journal of American Society for Testing and Materials, 1972, 7(1): 71–87.
[4] WATSON P, DABELL BJ. Cycle counting and fatigue damage: symposium on statistical aspects of fatigue testing[J]. Warwick University, 1975.
[5] BRACCESI C, CIANETTI F, LORI G, et al. A frequency method for fatigue life estimation of mechanical components under bimodal random stress process[J]. SDHM structural Durability and Health Monitoring, 2005, 1(4): 277–290.
[6] MRŠNIK M, SLAVIC J, BOLTEZAR M. Frequency-domain methods for a vibration-fatigue-life estimation. Application to real data[J]. International Journal of Fatigue, 2013, 4(7): 8–17.
[7] WANG M, YAO W. Frequency domain method for fatigue life analysis on notched specimens under random vibration loading[J]. Jounal of NanJing University of Aeronautics and Astronautics, 2008, 40(4): 489–531.
[8] 张朝阳, 刘俊, 白艳彬, 等. 基于谱分析法的深水半潜式平台疲劳强度分析[J]. 海洋工程, 2012(1): 53-59.
[9] 马网扣, 王志青, 张海彬, 等. 深水半潜式钻井平台节点疲劳寿命谱分析研究[J]. 海洋工程, 2008(3): 1-8.
[10] 谢文会, 谢彬, 王世圣, 等. 深水半潜式钻井平台典型节点谱疲劳分析[J]. 中国海洋平台, 2009(5): 28-33.
[11] 冯国庆. 船舶结构疲劳评估方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2003.
[12] 冯国庆. 船舶结构疲劳强度评估方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2006.
[13] 周蕊. 近海海浪的建模仿真研究[D]. 昆明: 昆明理工大学, 2015.
[14] 中国船级社. 海洋工程结构物疲劳强度评估技术指南[S]. 2022.
[15] 中国船级社. 基于谱分析的船体结构疲劳强度评估指南[S]. 2018.