针对传统宽带数字波束形成器精度低、主瓣误差大、旁瓣峰值高的问题,研究了一种基于二阶锥规划的FIR最小主瓣差异波束形成方法。首先采用基于FIR滤波器结构设计出的波束形成器,将传统方法中的小数预延迟改进为整数预延迟与FIR滤波器结合,以提高精度。然后,通过引入滤波器系数,将旁瓣级与FIR滤波器的阻带衰减级联系在一起,并且采用全局优化的方法将传统方法中的2个凸优化问题合为1个凸优化问题,确保了所得解是综合最优解。最后,重新定义主瓣响应误差,提出基于旁瓣峰值约束Minimax主瓣差异的FIR波束形成器设计准则。仿真结果表明,所提方法在时、空、频域中的表现都优于传统宽带波束形成方法。
A second-order cone programming-based FIR minimum main lobe difference beamforming method is proposed to address the low accuracy, large main lobe error, and high sidelobe peak issues of traditional broadband digital beamformers. First, a beamformer based on a FIR filter structure is designed to replace the fractional delay in traditional methods with an integer delay combined with FIR filtering to improve accuracy. Then, by introducing filter coefficients, the sidelobe level is linked with the stopband attenuation of the FIR filter. The two convex optimization problems in traditional methods are combined into one global optimization problem to ensure that the obtained solution is the overall optimal solution. Finally, a new definition of main lobe response error is proposed, and a Minimax main lobe difference FIR beamformer design criterion based on sidelobe peak constraints is presented. Simulation results show that the proposed method outperforms traditional broadband beamforming methods in the time, space, and frequency domains
2024,46(9): 125-130 收稿日期:2023-05-16
DOI:10.3404/j.issn.1672-7649.2024.09.021
分类号:U675
作者简介:杨子锐(1998 –),男,硕士研究生,研究方向为水下信号处理
参考文献:
[1] 王剑书, 樊养余, 杜瑞, 等. 改进的基于本征滤波的时域宽带波束形成[J]. 北京航空航天大学学报, 2015, 41(10): 1830-1835.
[2] 祝鹏, 杜金香. 随机错位组合阵列分级波束旁瓣控制方法[J]. 水下无人系统学报, 2021, 29(2): 183-188.
ZHU Peng, DU Jin-xiang. Side lobe control method in subarray beamforming based on randomly staggered combination array[J]. Journal of Unmanned Undersea Systems, 2021, 29(2): 183-188.
[3] JIANG Feng, LI Qinghua, CHEN Xiaogang. Channel smoothing for 802.11ax beamformed MIMO-OFDM[J]. IEEE Communications Letters, 2021, 25 (10): 3413-3417.
[4] 岳雷, 姜春华, 罗松, 等. 低频宽带多波束声呐系统设计及试验研究[J]. 水下无人系统学报, 2020, 28(1): 97-106.
YUE Lei, JIANG Chun-hua, LUO Song, et al. Design and experimental research of low-frequency broadband multi-beam sonar system[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 97-106.
[5] 石钰. 矢量拖曳阵MVDR波束形成及本舰干扰抵消方法研究[D]. 哈尔滨:哈尔滨工程大学, 2012.
[6] 鄢社锋, 马远良. 二阶锥规划方法对于时空域滤波器的优化设计与验证[J]. 中国科学E辑:信息科学, 2006(2): 153-171.
[7] 柯小梅. 宽带波束形成算法研究[D]. 西安:西安电子科技大学, 2018.
[8] HU X , PENG M , ZHONG C . Low-complexity beamforming design for IRS-aided communication systems[J]. Science China(Information Sciences), 2022, 65(10): 305-306.
[9] JAFAR N, PAEIZ A, MAHDI N. Feasibility of a novel beamforming algorithm via retrieving spatial harmonics[J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 38-46.
[10] 刘潇, 刘宝蕊, 窦修全, 等. 大规模面阵分级波束形成算法研究[J]. 河北工业科技, 2022, 39(1): 16-23.
[11] SHEN Che chou, TU Kuan lin. Ultrasound DMAS beamforming for estimation of tissue speed of sound in multi-angle plane-wave imaging[C]//IEEE International Ultrasonics Symposium. 2020.
[12] SHI Yunmei, KONAR , SIDIROPOULOS NICHOLAS D, et al. Learning to beamform for minimum outage[J]. IEEE Transactions on Signal Processing, 2018, 66(19): 5180-5193.
[13] XU Y, LIU J, LIU Z. Focused Widely Linear Beamforming[J]. Journal of Beijing Institute of Technology, 2019, 28(4): 744-749.
[14] 吴敏, 黎子皓, 郝程鹏,等. 基于压缩感知的低复杂度超分辨角度估计方法[J/OL]. 系统工程与电子技术: 1-9.
[15] 王子豪, 王安国, 冷文. 基于协方差矩阵重构和导向矢量优化的波束形成算法[J]. 重庆大学学报, 2022, 45(7): 79-92.