考虑横向风浪干扰下,舰船进入横摇运动状态易偏离期望航向轨迹,为此,研究考虑横向风浪干扰的舰船航向稳定性自动控制算法。对舰船舵机、横向风浪干扰建模,基于所掌握的舰船舵机控制参数、干扰强度,将期望航向参数输入航向控制器,在基于改进BP-PID算法的航向稳定性自动控制方案下,由改进BP神经网络整定PID控制器参数,输出满足期望航向条件的舵角、舵速调节比例系数、微分系数以及积分系数,调节航向,实现航向稳定性自动控制。实验中,横向风浪干扰下,使用此算法控制舰船航向后,舰船航行时首摇角、横摇角、鳍角均方差明显变小,说明该算法可控制舰船按照期望航向稳定航行。
Considering the lateral wind and wave interference, the ship entering the roll motion state is prone to deviate from the expected heading trajectory. Therefore, a ship heading stability automatic control algorithm considering the lateral wind and wave interference is studied. After modeling the ship's rudder and lateral wind and wave interference, this algorithm inputs the expected heading parameters into the heading controller based on the mastered ship's rudder control parameters and interference intensity. Under the improved BP-PID algorithm based heading stability automatic control scheme, the improved BP neural network adjusts the PID controller parameters and outputs the rudder angle and speed adjustment proportional coefficients that meet the expected heading conditions Differential and integral coefficients are used to adjust the heading and achieve automatic control of heading stability. In the experiment, under lateral wind and wave interference, using this algorithm to control the ship's heading significantly reduced the mean squared deviation of bow roll angle, roll angle, and fin angle during navigation, indicating that the algorithm can control the ship to navigate steadily according to the desired heading.
2024,46(9): 143-146 收稿日期:2023-12-27
DOI:10.3404/j.issn.1672-7649.2024.09.024
分类号:TP391
作者简介:董微微(1982 – ),女,硕士,讲师,研究方向为自动控制
参考文献:
[1] 黄宠平, 邹早建, 贺宏伟, 等. 基于预测和粒子群的船舶避碰与路径跟踪控制[J]. 中国航海, 2023, 46(2): 125-134.
[2] 李宗宣, 卜仁祥, 于镓铭. 带非线性观测器的船舶路径跟踪预测控制[J]. 计算机仿真, 2021, 38(9): 409-413.
[3] 李伟, 宁君, 赵国栋, 等. 基于分数阶滑模的船舶航向保持控制[J]. 上海海事大学学报, 2020, 41(3): 25-30.
[4] 陆潇杨, 刘志全, 高迪驹, 等. 带漂角和输入饱和的水面船舶航向控制[J]. 中国舰船研究, 2021, 16(2): 194-202.
[5] ISLAM, MUHAMMAD, SIFFAT, et al. Supertwisting and terminal sliding mode control of course keeping for ships by using particle swarm optimization[J]. Ocean Engineering, 2022, 266(12): 112942.1-112942.13.
[6] SIVARAJ, SIVARAMAN, RAJENDRAN, et al. Data driven control based on Deep Q-Network algorithm for heading control and of a in calm water and waves[J]. Ocean Engineering, 2022, 259(9): 1-13.
[7] 储瑞婷, 刘志全. 基于FTESO和漂角补偿的船舶航向滑模控制[J]. 中国舰船研究, 2022, 17(1): 71-79.
[8] 伊戈, 刘忠, 张建强, 等. 基于改进终端滑模控制的USV航向跟踪控制方法[J]. 电光与控制, 2020, 27(10): 12-16+21.