通过模拟不同的舰船航行场景和紧急情况,操作人员可以在安全的虚拟环境中进行实践,提高应对实际航行中可能遇到的各种情况的能力,为此提出基于3D打印技术的舰船航行环境三维建模方法。该方法采集舰船航行区域卫星的测高数据,以该数据为基础使用扰动重力反演方式对舰船航行环境的海底地形进行建模,对其进行纹理映射处理,得到舰船航行环境中的海底地形环境;再以舰船的尺寸、重量、材料等参数数据以及舰船场景图像作为基础,使用虚拟现实技术中的3D max软件构建舰船三维模型并纹理映射后,得到舰船三维模型,以舰船航行的海底地形三维模型和舰船三维模型为基础,采用光固化3D打印机打印海底地形三维模型和舰船三维模型后,得到现实的舰船航行环境三维建模结果。实验表明,该方法具备较强的扰动重力反演能力,可有效得到舰船航行的海底地形三维模型,以及建立舰船三维模型能力较佳,同时可有效运用3D打印机打印舰船三维模型和海底地形三维模型,应用效果较好。
By simulating different ship navigation scenarios and emergency situations, operators can practice in a safe virtual environment, improve their ability to deal with various situations that may be encountered in actual navigation, and propose a 3D modeling method for ship navigation environment based on 3D printing technology. This method collects altimetry data from satellites in the navigation area of ships. Based on this data, a disturbance gravity inversion method is used to model the seabed terrain of the ship's navigation environment. After texture mapping, the seabed terrain environment in the ship's navigation environment is obtained; Based on the parameter data of ship size, weight, materials, and ship scene images, a 3D model of the ship is constructed using 3D Max software in virtual reality technology and texture mapping is performed to obtain the 3D model of the ship. Based on the 3D model of the seabed terrain and ship navigation, a UV cured 3D printer is used to print the 3D model of the seabed terrain and ship navigation environment, and the 3D modeling results of the real ship navigation environment are obtained. The experiment shows that this method has strong disturbance gravity inversion ability, can effectively obtain the three-dimensional model of the seabed terrain for ship navigation, and has better ability to establish the three-dimensional model of the ship. At the same time, it can effectively use the 3D printer to print the three-dimensional model of the ship and the three-dimensional model of the seabed terrain, and the application effect is good.
2024,46(9): 156-159 收稿日期:2023-10-22
DOI:10.3404/j.issn.1672-7649.2024.09.027
分类号:TP273.5
作者简介:肖赛锋(1986 – ),女,硕士,讲师,研究方向为数字媒体
参考文献:
[1] 郭成豹, 胡松, 王文井, 等. 利用磁传感器阵列磁场差值的舰船磁场反演建模方法[J]. 兵工学报, 2022, 43(1): 111-119.
GUO Chengbao, HU Song, WANG Wenjing, et al. Ship magnetic field inversion modeling method utilizing the magnetic field difference between magnetic sensors[J]. Acta Armamentarii, 2022, 43(1): 111-119.
[2] 杨晓, 任鸿翔, 廉静静, 等. VR交互式三维虚拟船舶建模与仿真[J]. 中国航海, 2022, 45(1): 37-42,49.
YANG Xiao, REN Hongxiang, LIAN Jingjing, et al. 3D virtual ship construction and simulation through VR interactive[J]. Navigation of China, 2022, 45(1): 37-42,49.
[3] 李井义, 胡勇, 俞峰, 等. 以型线图为数据输入的CATIA船体建模方法[J]. 中国舰船研究, 2022, 17(6): 167-173,181.
LI Jingyi, HU Yong, YU Feng, et al. CATIA modeling method of ship hull with hull line as data input[J]. Chinese Journal of Ship Research, 2022, 17(6): 167-173,181.
[4] 王晓琦, 赵旸, 张键, 等. 基于深度学习的船体三维模型自动生成方法[J]. 兵工学报, 2022, 43(z2): 115-119.
WANG Xiaoqi, ZHAO Yang, ZHANG Jian, et al. 3D ship model generation algorithm based on deep learning[J]. Acta Armamentarii, 2022, 43(z2): 115-119.
[5] 太志伟, 张兴龙, 尹晓龙, 等. 三维船舶模型边界表示转构造表示方法[J]. 计算机辅助设计与图形学学报, 2023, 35(12): 1851-1862.
TAI Zhiwei, ZHANG Xinglong, YIN Xiaolong, et al. A method for transforming B-Rep of 3D ship models into CSG[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(12): 1851-1862.