水下无人航行器设计具有参数多、目标性能相互耦合的特点,传统设计方法在平衡各个设计目标过程中占用过多时间和计算资源,影响设计进程。多目标优化方法通过多性能的参数化建模给水下无人航行器的优化设计提供了简洁有效的解决方案,提升了设计效率与质量。本文对多目标优化方法在水下无人航行器设计上的研究进行整理与总结,首先概述多目标优化方法的优化机理,强调水下无人航行器多目标优化设计的优势性;其次围绕外形、结构、动力推进等几个设计方向上的多目标问题,总结归纳了当前的研究进展;最后结合未来发展趋势,提出水下无人航行器多目标优化设计的发展设想,旨在为相关技术研究提供有益借鉴与参考。
The design of underwater unmanned vehicles is characterized by the coupling of multiple objectives with numerous parameters, and traditional design methods occupy too much time and computing resources in the process of balancing various design objectives, which affects the design process. Multi-objective optimization methods provide a concise and effective solution for the optimization design of underwater unmanned vehicles by parameterizing multiple performance measures, which improves both design efficiency and quality. In this paper, the research progress and achievements in multi-objective optimization methods applied to design of underwater unmanned vehicles are summarized and organized. Firstly, the optimization mechanism of multi-objective optimization methods is outlined, emphasizing the advantages of multi-objective optimization design for underwater unmanned vehicles. Then, the research progress of multi-objective problems in several design directions, including external shape, structure, and propulsion, is summarized. Finally, combining with the future development trend, the development of multi-objective optimization design of underwater unmanned vehicles is proposed, which provides useful references for related technological research.
2024,46(10): 9-15 收稿日期:2023-05-19
DOI:10.3404/j.issn.1672-7649.2024.10.002
分类号:U674.941
作者简介:吴昌脉(1996-),男,硕士,助理工程师,研究方向为水下无人平台总体设计
参考文献:
[1] PUZAI N M, AYOB A, ARSHAD M. A review on recent advancements in unmanned underwater vehicle design[J]. International Society of Ocean, Mechanical and Aerospace Scientists and Engineers, 2016, 31(5): 1-8.
[2] LIN G Z, YANG Y, HE Z G, et al. Hydrodynamic optimization in high-acceleration underwater motions using added-mass coefficient[J]. Ocean Engineering, 2022, 263(1): 133–144.
[3] 庞月, 曹家鑫. 基于CFD的水下航行器流向方向上腔体距离的研究[J]. 现代制造工程, 2013, 5(11): 76-80.
[4] BYUN W, KIM M K, PARK K J, et al. Buckling analysis and optimal structural design of supercavitating vehicles using finite element technology[J]. International Journal of Naval Architecture and Ocean Engineering, 2011, 3(4): 274-285.
[5] 关文信. 基于SolidWorks某水下航行器壳体有限元分析[J]. 机电工程技术, 2020, 49(11): 131-133.
GUAN W X. Finite element analysis of an underwater vehicle shell based on SolidWorks[J]. Mechanical and Electrical Engineering Technology, 2020, 49(11): 131-133.
[6] 肖人彬, 李贵, 陈峙臻. 进化超多目标优化研究进展及展望[J/OL]. 控制与决策, (2023-04-06)[2023-05-10].
[7] ZADEH L A. Optimality and non-scalar-valued performance criteria[J]. IEEE Transactions on Automatic Control, 1963, 8(1): 59-60.
[8] TSENG C H, T W LU. Minimax multiobjective optimization in structural design[J]. International Journal for Numerical Methods in Engineering, 2010, 30(6): 1213-1228.
[9] HAIMES Y Y, LASDON L S, WISMER D A. On a bicriterion formulation of the problems of integrated system identification and system optimization[J]. IEEE Transactions on Systems Man and Cybernetics, 1971, 1(3): 296-297.
[10] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[11] ZHANG Q F, LI H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[12] COELLO C, LECHUGA M S. MOPSO: A proposal for multiple objective particle swarm optimization[C]// Proceedings of the 2002 Congress on Evolutionary Computation, 2002.
[13] ABBASI S, ZEINALI M, NEJADABBASI P. Autonomous underwater vehicle hull geometry optimization using a multi-objective algorithm approach[J]. Materials and Energy Research Center, 2018, 31(9): 1593-1601.
[14] 杨卓懿, 于宪钊, 庞永杰, 等. 基于多目标遗传算法的潜器外形优化设计[J]. 船舶力学, 2011, 15(8): 874-880.
YANG Z Y, YU X Z, PANG Y J, et al. Optimization of submersible shape based on multi-objective genetic algorithm[J]. Journal of Ship Mechanics, 2011, 15(8): 874-880.
[15] GAO W, GU H T, SUN Y, et al. Multi-objective design optimization of main body of an unpowered underwater vehicle based on surrogate models[C]// 2020 3rd International Conference on Unmanned Systems(ICUS), 2020.
[16] TANG Q R, LI Y H, DENG Z Q, et al. Optimal shape design of an autonomous underwater vehicle based on multi-objective particle swarm optimization[J]. Natural Computing, 2020, 19(4): 733–742.
[17] 李阳. 螺旋推进式水下航行器结构设计与外形优化[D]. 青岛: 青岛科技大学, 2020.
[18] VASUDEV K L, SHARMA R, BHATTACHARYYA S K. A multi-objective optimization design framework integrated with CFD for the design of AUVs[J]. Methods in Oceanography, 2014(10): 138-165.
[19] FU X Y, LEI L, YANG G, et al. Multi-objective shape optimization of autonomous underwater glider based on fast elitist non-dominated sorting genetic algorithm[J]. Ocean Engineering, 2018, 157(1): 339-349.
[20] 裴譞, 张宇文, 王亚东, 等. 基于自适应模拟退火法的UUV艏部线型优化设计[J]. 鱼雷技术, 2011, 19(2): 86-90.
[21] SONG B W, ZHU Q F, LIU Z Y. Research on multi-objective optimization design of the UUV shape based on numerical simulation[C]// International Conference on Swarm Intelligence, 2010.
[22] 彭亮斌, 吴有生. 扁平非回转艇型参数优化建模方法及阻力特性研究[J]. 船舶力学, 2023, 27(3): 344-358.
PENG L B, WU Y S. Resistance characteristics and parameter optimization modeling method for non-body-of-revolution hull lines[J]. Journal of Ship Mechanics, 2023, 27(3): 344-358.
[23] 刘继鑫. 鲆鲽鱼型双驱动仿生机器鱼研究[D]. 杭州: 中国计量大学, 2020.
[24] 陈光耀. 仿生非回转外形高速水下航行器空化器设计及实验研究[D]. 天津: 天津大学, 2021.
[25] SUN C Y, SONG B W , WANG P. Parametric geometric model and shape optimization of an underwater glider with blended-wing-body[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7(6): 995-1006.
[26] 张宁, 王鹏, 宋保维. 基于改进型Kriging-HDMR的翼身融合水下滑翔机外形优化设计[J]. 水下无人系统学报, 2019, 27(5): 496-502.
ZHANG N, WANG P, SONG B W. Shape optimization for blended-wing-body underwater glider using improved Kriging-HDMR[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 496-502.
[27] 刘峰, 屠超华, 赵彦凯. 柱状耐压结构参数化分析与多目标优化研究[J]. 机械强度, 2021, 43(3): 601-607.
LIU F, TU C H, ZHAO Y K. Research on parametric analysis and muti-objective optimization of cylindrical pressures structure[J]. Journal of Mechanical Strength, 2021, 43(3): 601-607.
[28] 高启升, 朱兴华, 于延凯, 等. UUV耐压结构多目标优化设计[J]. 工程设计学报, 2020, 27(2): 232-238.
GAO Q S, ZHU X H, YU Y K, et al. Multi-objective optimal design of uuv pressure structure[J]. Chinese Journal of Engineering Design, 2020, 27(2): 232-238.
[29] 李学斌, 潘治, 甘霖. 基于改进非支配排序遗传算法的纵横加筋圆柱壳多目标优化[J]. 舰船科学技术, 2008(4): 37-39+60.
LI X B, PAN Z, GAN L. Mutiobjective optimization design of longitudinal-transverse stiffened cylindrical shell[J]. Ship Science and Technology, 2008(4): 37-39+60.
[30] 汪志强, 黄利华, 李学斌. 基于综合裕度的环肋圆柱壳多目标优化研究[J]. 船舶工程, 2016, 38(12): 14-18.
WANG Z Q, HUANG L H, LI X B. Study of multi-objective optimization of ring stiffened cylindrical shell based on weighted-sum margin[J]. Ship Engineering, 2016, 38(12): 14-18.
[31] LIU H T, LI N. Reliability analysis of autonomous underwater vehicle aft pressure shell for optimal design and strength[J]. Ocean Engineering, 2022, 249(1): 110906.1–110906.8.
[32] HE Y R, SONG B W, DONG H C. Multi-objective optimization design for the multi-bubble pressure cabin in BWB underwater Glider[J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(4): 1-11.
[33] 何衍儒, 宋保维, 曹永辉. 使用混合代理模型的自主式水下航行器藕节壳体多目标优化[J]. 水下无人系统学报, 2017, 25(6): 410-417.
HE Y R, SONG B W, CAO Y H. Mixture surrogate model based structural optimization design of multiple intersecting spheres for automatic undersea vehicle[J]. Journal of Unmanned Undersea Systems, 2017, 25(6): 410-417.
[34] 甄春博, 刘兆瑞, 王天霖, 等. 基于遗传算法的碟型水下滑翔机结构优化[J]. 海洋技术学报, 2017, 36(2): 10-15.
[35] 贾锐, 石秀华, 徐宇明, 等. 圆柱薄壳结构动态综合优化[J]. 机械设计与制造, 2007(12): 66-67.
[36] BAGHERI M, JAFARI A A, SADEGHIFAR M. Multi-objective optimization of ring stiffened cylindrical shells using a genetic algorithm[J]. Journal of Sound & Vibration, 2011, 330(3): 374-384.
[37] 陈炉云, 王德禹. 基于iSIGHT的环肋圆柱壳动力学优化设计[J]. 中国舰船研究, 2007(6): 1-3+8.
CHEN L Y, WANG D Y. Dynamic optimization design of ring-stiffened cylindrical shell based on iSIGHT[J]. Chinese Journal of Ship Research, 2007(6): 1-3+8.
[38] 刘东, 王春旭, 刘均, 等. 纵横加筋圆锥壳振动特性多目标优化设计[J]. 中国舰船研究, 2018, 13(1): 24-30.
LIU D, WANG C X, LIU J, et al. Multi-objective optimization design for vibration characteristics of longitudinal and transverse stiffened conical shells[J]. Chinese Journal of Ship Research, 2018, 13(1): 24-30.
[39] 王司令, 宋保维, 段桂林. 某型AUV对转电机子群协同多目标粒子群优化[J]. 电工技术学报, 2015, 30(5): 135-141.
[40] ILKA R, GHOLAMIAN A. Optimum design of a five-phase permanent magnet synchronous motor for underwater vehicles by use of particle swarm optimization[J]. Telkomnika, 2012, 10(4): 9-18.
[41] 李海峰, 何其伟, 俞翔, 等. 推进轴系参数优化对水下结构声振特性影响研究[J]. 振动与冲击, 2017, 36(14): 98-103.
[42] 王晓强, 龚正琦. 水下螺旋桨技术发展现状与展望[J]. 中国水运, 2021(4): 74-76.
[43] 秦智. 水下机器人导管螺旋桨设计与优化[D]. 赣州: 江西理工大学, 2020.
[44] 周运凯. 水下泵喷推进器设计方法与数值优化研究[D]. 镇江: 江苏大学, 2020.
[45] 蒋寒. 轮缘推进器电机与水力部件性能协同优化方法研究[D]. 武汉: 武汉理工大学, 2021.
[46] 唐元贵, 张艾群, 俞建成, 等. 两栖机器人轮桨腿驱动机构多目标优化设计[J]. 机器人, 2009, 31(3): 276-280.
[47] TANG Y G, LIU C J, ZHANG A Q, et al. Optimal distribution of propulsion for an amphibious robot based on wheel-propeller-leg mixed thrusters[C]// 11th International Conference on Control, Automation Robotics and Vision, 2010.
[48] KELASIDI E, JESMANI M, PETTERSEN K Y, et al. Multi-objective optimization for efficient motion of underwater snake robots[J]. Artificial Life & Robotics, 2016, 21(4): 411-422.
[49] 宋保维, 潘光, 张立川, 等. 自主水下航行器发展趋势及关键技术[J]. 中国舰船研究, 2022, 17(5): 27-44.
[50] 操心慧, 许丽娟. 基于Pareto支配的高维多目标优化算法的分析与研究[J]. 现代计算机, 2023, 29(2): 62-67.