本文提出减少径向高度和导流片环绕导流锥分布这2种喷嘴导流片结构,通过DES-FEM耦合的方法研究了喷嘴导流片对喷水推进泵推力及噪声性能的影响。结果表明,随着喷嘴导流片径向高度减少,喷水推进泵推力增大0.61%,流量略微增大而扭矩略微降低,内流噪声主频仍为导叶叶频但幅值降低2.43%,总声压级略微升高;导流片环绕导流锥分布时,喷水推进泵推力提高1.03%,流量增大0.76%,扭矩提高,声压级主频处幅值降低2.05%,总声压级降低,内流噪声主频由导叶偏移至叶轮处,但两者声压级幅值差异较小;各方案频谱中均存在叶轮叶频谐频;内流噪声能量主要集中在中低频段。
Two crucial parameters, namely the radial height and distribution of the nozzle guide vanes, were taken into consideration, based on the initial nozzle guide vane structure. The influence of various nozzle guide vanes on the thrust and noise performance on the water-jet pump was studied by hybrid method of DES and FEM. The numerical results illustrated that as the radial height of the nozzle guide vanes decreases, the thrust and flow rate of the WJP increase while the torque decreases a little. Besides, the guide vane passing frequency is still identified as the main frequency of internal flow noise, although the amplitude of sound pressure level decreases 2.43%. The overall sound pressure level of internal flow noise increases. When the nozzle guide vanes are distributed around the guide cone, the thrust of the water-jet pump increases by 1.03%, flow rate increases by 0.76% and toque increases a little. Meanwhile, the amplitude at the main frequency of sound pressure level decreases by 2.05% and the overall sound pressure level of internal flow noise decreases. Additionally, the main frequency of internal flow noise shifts to the impeller blade passing frequency and the guide vane passing frequency becomes the secondary frequency. However, the difference in sound pressure level amplitude between these two frequencies is small. There is impeller blade harmonic frequency in different schemes. Internal flow noise energy is predominantly found within the low to medium frequency band.
2024,46(10): 27-33 收稿日期:2023-09-18
DOI:10.3404/j.issn.1672-7649.2024.10.005
分类号:U664.34
基金项目:国家自然科学基金资助项目(52179084,52379090);泰州市重大科技成果转化项目(SCG202205)
作者简介:徐声海(1987-),男,工程师,研究方向为泵水力性能
参考文献:
[1] 金平仲. 船舶喷水推进[M]. 北京: 国防工业出版社, 1986.
[2] 姜华. 喷水推进装置在船舶上的应用发展[J]. 广东造船, 2008, 101(2): 34-35.
JIANG H. The development for ship waterjet propulsion application[J]. Guangdong Shipbuilding, 2008, 101(2): 34-35.
[3] ROBERTS J, WALKER G. Boundary layer ingestion effects in flush waterjet intakes[J]. Instytut Archeologii I Etnologii Polskiej Akademii Nauk, 1998(7): 1-13.
[4] 罗灿, 成立, 刘超, 等. 船用喷水推进泵装置水力特性数值模拟[J]. 排灌机械工程学报, 2015, 33(5): 374–379.
LUO C, CHENG L, LIU C, et al. Numerical simulation of performance of marine waterjet propulsion system[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(5): 374–379.
[5] 胡海鹏, 石海峡, 柴立平, 等. 转速对微型喷水推进泵性能影响的试验研究[J]. 合肥工业大学学报(自然科学版), 2016, 39(6): 725-729.
HU H P, SHI H X, CHAI L P, et al. Experimental study of the influence of rotating speed on the performance of micro water jet pump[J]. Journal of Heifei University of Technology, 2016, 39(6): 725-729.
[6] YANG D, HUANG Z D, GUO A, et al. Effect of tip clearance on hydraulic performance of water-jet pump[J]. Journal of Physics Conference Series, 2017, 916: 012020.
[7] 李明慧, 刘厚林, 谈明高, 等. 不同工况下喷水推进泵内流性能研究[J]. 舰船科学技术, 2021, 43(23): 88-93.
LI M H, LIU H L, TAN M G, et al. Study on internal flow performance of water jet pump under different working conditions[J]. Ship Science and Technology, 2021, 43(23): 88-93.
[8] 孔冬梅, 潘中永, 宗平. 喷口形状对喷水推进器性能的影响[J]. 排灌机械工程学报, 2022, 40(6): 588–595.
KONG D M, PAN Z Y, ZONG P. Effect of nozzle shape on water-jet propeller propulsion performance[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(6): 588–595.
[9] 王绍增, 王永生, 丁江明. 喷水推进器进水流道及其格栅的优化设计研究[J]. 船舶力学, 2014, 18(4): 357-362.
WANG S Z, WANG Y S, DING J M. Study on the optimization design of duct with grid of waterjet propulsion[J]. Journal of Ship Mechanics, 2014, 18(4): 357-362.
[10] 曹玉良, 王永生, 靳栓宝. 喷水推进器推进性能优化研究[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(1): 211-215.
CAO Y L, WANG Y S, JIN S B. Propulsive performance optimizing of a waterjet[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2015, 39(1): 211-215.
[11] 王小二, 张振山, 靳栓宝. 高速巡逻艇喷水推进泵三元优化设计研究[J]. 武汉理工大学学报(交通科学与工程版), 2017, 41(1): 64–69.
WANG X E, ZHANG Z S, JIN S B. Optimization design of water jet propulsion equipped on high speed patrol boat[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2017, 41(1): 64–69.
[12] HUANG R F, DAI Y X, LUO X W, et al. Multi-objective optimization of the flush-type intake duct for a waterjet propulsion system[J]. Ocean Engineering, 2021, 49(10): 109-114.
[13] 郝宗睿, 李超, 任万龙, 等. 基于改进粒子群算法的喷水推进泵叶片优化设计[J]. 排灌机械工程学报, 2020, 38(6): 566-570.
HAO Z R, LI C, REN W L, et al. Optimization design of water jet propulsion pump blade based on improved PSO algorithm[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(6): 566-570.
[14] 陈杰, 张孟杰, 刘涛涛, 等. 基于代理模型的喷水推进泵水力特性分析及优化[J]. 数字海洋与水下攻防, 2021, 4(4): 269–278.
CHEN J, ZHANG M J, LIU T T. Surrogate-based analysis and optimization of hydraulic characteristics of a water-jet propulsion pump[J]. Digital Ocean & Underwater Warfare, 2021, 4(4): 269–278.
[15] VERBEEK R, BULTEN N. Interpretation of model scale test results with aid of CFD calculation[C]// Royal institution of Naval Architects, International Conference on Waterjet propulsion III. Sweden: RINA, 2001: 350-358.
[16] 杨敬江, 周润泽, 陈汇龙, 等. 双蜗壳离心泵启动过程瞬态流动特性与隔板处压力脉动特性[J]. 江苏大学学报(自然科学版), 2021, 42(3): 278–283.
YANG J J, ZHOU R Z, CHEN H L, et al. Transient flow characteristics and pressure pulsation characteristics at splitter of double-volute centrifugal pump during startup[J]. Journal of Jiangsu University(Natural Science Edition), 2021, 42(3): 278–283.
[17] 宋晓峰, 毛秀丽, 陆家豪, 等. 基于CFD的长短叶片型水泵水轮机转轮优化设计[J]. 水利水电技术, 2021, 52(4): 115-123.
SONG X F, MAO X L, LU J H, et al. CFD-based optimal design of pump-turbine runner with long and short blades[J]. Water Resources and Hydropower Engineering, 2021, 52(4): 115-123.