TNT在封闭空间内爆炸会发生燃烧反应并释放大量的能量,这些附加能量会对内爆载荷起到增强作用,为分析封闭空间内爆炸载荷作用下的结构动态响应。开展封闭空间爆炸试验,通过试验数据对称性验证,说明试验中压力测试结果准确可靠;然后开展数值计算研究,并探讨板厚、屈服应力和边界约束3个因素对靶板结构动态响应的影响。数值计算与试验结果的准静态压力吻合较好,靶板中心点初始峰值位移和最终位移的误差均小于5%,验证数值计算方法的可靠性;靶板中心点初始峰值位移和最终位移增大比例与板厚减小比例相当;靶板中心点初始峰值位移减小比例约为屈服应力增大比例的0.2倍,而最终位移的减小比例约为屈服应力增大比例的0.4倍。所采用的数值计算方法能够很好地模拟结构在封闭空间爆炸载荷作用下的响应,可为舰船抗爆结构设计提供一定参考。
TNT explosives will undergo combustion reactions and release a large amount of energy when exploded in confined space. These additional energy will enhance the confined blast load, in order to analyze the dynamic response of the structure under explosive load in the confined space. A confined space explosion test was conducted, and the symmetry of the test data was verified to demonstrate the accuracy and reliability of the pressure test results. Numerical calculations were conducted to investigate the effects of plate thickness, yield stress, and boundary constraints on the dynamic response of the target plate structure. The quasi-static pressure of the numerical calculation and experimental results were in good agreement, and the errors between the initial peak displacement and the final displacement of the target plate center point were less than 5%, proving the reliability of the numerical calculation method. The proportion of initial peak displacement and final displacement increase at the center point of the target plate was equivalent to the proportion of plate thickness decrease. The proportion of initial peak displacement reduction at the center point of the target plate was about 0.2 times the proportion of yield stress increase, while the proportion of final displacement reduction was about 0.4 times the proportion of yield stress increase. The numerical calculation method used can effectively simulate the response of the structure under blast load in confined space, providing a certain reference for the design of ship anti explosion structures.
2024,46(10): 34-42 收稿日期:2023-06-28
DOI:10.3404/j.issn.1672-7649.2024.10.006
分类号:U661.4
基金项目:国家自然科学基金资助项目(52171318)
作者简介:徐敬博(1992-),男,硕士,助理工程师,研究方向为抗爆抗冲击
参考文献:
[1] NYSTRÖM U, GYLLTOFT K. Numerical studies of the combined effects of blast and fragment loading[J]. International Journal of Impact Engineering, 2009, 36(8): 995-1005.
[2] 胡宏伟, 宋浦, 赵省向, 等. 有限空间内部爆炸研究进展[J]. 含能材料, 2013, 21(4): 539-546.
[3] 孔祥韶, 周沪, 郑成, 等. 基于饱和响应时间的封闭空间内爆炸载荷等效方法研究[J]. 爆炸与冲击, 2019, 39(9): 15-25.
[4] 焦立启, 张权, 李茂, 等. 典型舱内爆炸载荷对加筋板的毁伤特性[J]. 中国舰船研究, 2021, 16(2): 108-115,124.
[5] WANG A J, HOPKINS H G. On the plastic deformation of built-in circular plates under impulsive load[J]. Journal of the Mechanics & Physics of Solids, 1954, 3(1): 22-37.
[6] FLORENCE A L. Clamped circular rigid-plastic plates under central blast loading[J]. International Journal of Solids & Structures, 1966, 2(2): 319-335.
[7] 郑成, 孔祥韶, 周沪, 等. 全封闭舱内爆炸载荷作用下薄板变形研究[J]. 兵工学报, 2018, 39(8): 1582-1589.
[8] LI Q M, JONES N. On dimensionless numbers for dynamic plastic response of structural members[J]. Archive of Applied Mechanics, 2000, 70(4): 245-254.
[9] SCHLEYER G K, HSU S S, WHITE M D. Scaling of pulse loaded mild steel plates with different edge restraint[J]. International Journal of Mechanical Sciences, 2004, 46(9): 1267-1287.
[10] LUO Z, ZHU Y P, ZHAO X Y, et al. High-order Vibrations' dynamic scaling laws of distorted scaled models of thin-walled short cylindrical shells[J]. Mechanics Based Design of Structures & Machines, 2015, 43(4): 514-534.
[11] LUO Z, ZHU Y, ZHAO X, et al. Determination method of dynamic distorted scaling laws and applicable structure size intervals of a rotating thin-wall short cylindrical shell[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229(5): 806–817.
[12] ZHAO X, TIWARI V, SUTTON M A, et al. Scaling of the deformation histories for clamped circular plates; subjected to blast loading by buried charges[J]. International Journal of Impact Engineering, 2013, 54(4): 31-50.
[13] YUAN Y, ZHANG C, XU Y. Influence of standoff distance on the deformation of square steel plates subjected to internal blast loadings[J]. Thin-Walled Structures, 2021, 164: 107914.
[14] 侯海量, 朱锡, 梅志远. 舱内爆炸载荷及舱室板架结构的失效模式分析[J]. 爆炸与冲击, 2007, 27(2): 151-158.
[15] 郑成. 舱内爆炸载荷下单层及多层层合板响应特性研究[D]. 武汉: 武汉理工大学, 2018.
[16] 孔祥韶, 徐敬博, 徐维铮, 等. 舱室密闭空间中爆炸载荷后燃烧效应数值计算研究[J]. 兵工学报, 2019, 40(4): 799-806.
[17] GERETTO C. The effects of different degrees of confinement on the deformation of square plates subjected to blast loading[D]. Cape Town: University of Cape Town, 2012.
[18] 孔祥韶. 爆炸载荷及复合多层防护结构响应特性研究[D]. 武汉: 武汉理工大学, 2013.
[19] 宋浦, 杨凯, 梁安定, 等. 国内外TNT炸药的JWL状态方程及其能量释放差异分析[J]. 火炸药学报, 2013, 36(2): 42-45.
[20] DOBRATZ B M. LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants[Z]. United States, 1981.
[21] 张博, 白春华. 气相爆轰动力学[M]. 北京: 科学出版社, 2012.