结构疲劳破坏是造成船舶与海洋结构物的主要破坏模式之一,对于双层底船体某些结构形式,其疲劳强度问题尤为突出。选取某大型散货船为研究对象,依据整船有限计算结果以及大量文献调查,确定疲劳损伤部位,对船体双层底过渡区典型节点及优化后节点分别设计和开展缩比模型试验,综合试验与有限元计算结果验证了疲劳试验以及优化方式的可靠性,并采用D曲线与CCS《船体结构疲劳强度指南》对节点模型进行疲劳强度评估,结合疲劳试验结果进一步说明,该优化方案对双层底船体类似节点的结构设计具有一定借鉴意义。
Structural fatigue failure is one of the main failure modes of ships and marine structures, and the fatigue strength problem is particularly prominent for some structural forms of double-bottom hull. Therefore, a large bulk carrier is selected as the research object. According to the finite calculation results of the whole ship and a large number of literature surveys, the fatigue damage location is determined. The scale model test is designed and carried out for the typical joints and optimized joints in the transition zone of the double-bottom hull. The comprehensive test and finite element calculation results verify the reliability of fatigue test and optimization method, and the fatigue strength of the joint model is evaluated by using D curve and CCS " Guidelines for fatigue strength of ship structure ". Combined with the fatigue test results, it further shows that the optimization scheme has certain reference significance for the structural design of similar joints in the double-bottom hull.
2024,46(10): 59-64 收稿日期:2023-07-10
DOI:10.3404/j.issn.1672-7649.2024.10.010
分类号:U661.4
基金项目:工信部高技术船舶科研资助项目(MC-202002-C01-02)
作者简介:乔浪豪(1998-),男,硕士研究生,研究方向为结构安全性与可靠性
参考文献:
[1] 周陈炎, 张佳宁, 孟巧, 等. 基于改进谱分析法的船舶疲劳强度直接计算[J]. 舰船科学技术, 2022, 44(2): 48-52.
ZHOU C Y, ZHANG J N, MENG Q, et al. Direct calculation of ship fatigue strength based on improved spectral analysis method[J]. Ship Science and Technology, 2022, 44(2): 48-52.
[2] JANG B S, ITO H, KIM K S, et al. A study of fatigue crack propagation at a web stiffener on a longitudinal stiffener[J]. Journal of Marine Science and Technology, 2010, 15(2): 176-189.
[3] 何文涛, 刘敬喜, 解德. 船体纵骨典型节点疲劳裂纹扩展寿命评估[J]. 船舶力学, 2016, 20(11): 1475-1484.
HE W T, LIU J X, XIE D. Life assessment of fatigue crack growth of typical details in hull longitudinals[J]. Journal of Ship Mechanics, 2016, 20(11): 1475-1484.
[4] 牛军燕, 鲁兆伟. 船舶底边舱折角处结构优化设计[J]. 舰船科学技术, 2022, 44(7): 51-54.
NIU J Y, LU Z W. Structural optimization design of ship bottom side cabin corner[J]. Ship Science and Technology, 2022, 44(7): 51-54.
[5] 史战新. 基于Ansys子模型法的肘板结构优化[J]. 舰船科学技术, 2014, 36(8): 19-26.
SHI Z X. The bracket structure optimization based on Ansys sub-model method[J]. Ship Science and Technology, 2014, 36(8): 19-26.
[6] 潘希颖. 散货船底部纵骨防倾肘板节点疲劳优化研究[J]. 船海工程, 2014, 43(5): 15-20.
PAN X Y. Fatigue optimization research of the bottom longitudinal connection detail with tripping bracket for bulk carrier[J]. Ocean Engineering, 2014, 43(5): 15-20.
[7] 中国船级社. 钢制海船入级规范[S]. 北京: 人民交通出版社, 2022.
[8] FRICKE W. Recommended hot-spot analysis procedure for structural details of ships and FPSOs based on round-robin FE analyses[J]. International Journal of Offshore and Polar Engineering, 2002, 12(1): 40-47.
[9] FRICKE W, PAETZOLD H. Full-scale fatigue tests of ship structures to validate the S–N approaches for fatigue strength assessment[J]. Marine Structures, 2010, 23(1): 115-130.
[10] 陈崧, 竺一峰, 胡嘉骏, 等. 船体结构S-N曲线选取方法[J]. 舰船科学技术, 2014, 36(1): 22-26.
CHEN S, ZHU Y F, HU J J, et al. Research on selection method of S-N curve for hull structures[J]. Ship Science and Technology, 2014, 36(1): 22-26.
[11] GD18-2021, 船体结构疲劳强度指南[S]. 北京: 人民交通出版社, 2021.