船舶结构轻量化设计对于提高船舶的运载能力和实现更大的经济效益具有重要意义,针对传统优化设计方法建立优化模型时约束条件无显式表达的问题,提出基于贝叶斯分类器的船舶型材优化设计方法。首先,依据贝叶斯理论和核密度估计方法构建贝叶斯分类器,然后利用贝叶斯分类器代替隐式约束函数进行求解,最后以T型材的优化设计问题为例进行验证,并将优化结果对比约束条件可显式表达情况下的求解结果进行分析。基于单约束条件的贝叶斯分类器目标函数偏差低于2%,基于多约束条件的贝叶斯分类器求解目标函数偏差在8%左右,且不同的贝叶斯分类器设计方法会对优化求解结果精确程度产生影响。使用贝叶斯分类器做出决策边界能代替实际边界进行优化求解,验证了贝叶斯分类器驱动求解器寻优的可行性,对解决约束条件无显式表达的问题提供了新思路。
The lightweight design of ship structure is important to improve the ship's carrying capacity and achieve greater economic benefits. In response to the problem that the constraints are not expressed explicitly when the traditional optimization design method builds the optimization model, a Bayesian classifier-based optimization design method for ship profiles is proposed. Firstly, a Bayesian classifier is constructed based on Bayesian theory and kernel density estimation method, and then the Bayesian classifier is used to solve the problem instead of implicit constraint function, and finally the optimization design problem of T profile is verified as an example, and the optimization results are compared with the solution results in the case that the constraints can be expressed explicitly. The deviation of the objective function of Bayesian classifier based on single constraint is less than 2%, and the deviation of the objective function of Bayesian classifier solved based on multiple constraints is around 8%, and different Bayesian classifier design methods will have an impact on the accuracy of the optimization solution results. The use of Bayesian classifier to make decision boundary can replace the actual boundary for optimization solution, which verifies the feasibility of Bayesian classifier-driven solver seeking, and provides a new idea to solve the problem of constraint without explicit expression.
2024,46(10): 75-82 收稿日期:2023-06-14
DOI:10.3404/j.issn.1672-7649.2024.10.013
分类号:U663.2
作者简介:柳俊杰(1998-),男,硕士研究生,研究方向为无人艇编队控制
参考文献:
[1] 韩余贺. 船舶结构优化设计方法[J]. 科学与财富, 2019(25): 19.
HAN Y H. Ship structure optimization design method[J]. Science and Wealth, 2019(25): 19.
[2] 刘博斌. 关于船舶结构优化设计的若干思考[J]. 船舶物资与市场, 2021, 29(1): 31-32.
[3] 王理冬, 汪光阳, 程泽凯, 等. 贝叶斯网络的发展与展望[J]. 安徽工业大学学报(自然科学版), 2006, 23(2): 195-198.
WANG L D, WANG G Y, CHENG Z K, et al. Development and prospect of bayesian networks[J]. Journal of Anhui University of Technology (Natural Science Edition), 2006, 23(2): 195-198.
[4] 董立岩, 苑森淼, 刘光远, 等. 基于贝叶斯分类器的图像分类[J]. 吉林大学学报(理学版), 2007, 45(2): 249-253.
DONG L Y, YUAN S M, LIU G Y, et al. Image classification based on bayesian classifier[J]. Journal of Jilin University (Science Edition), 2007, 45(2): 249-253.
[5] 华玲, 唐韬, 卿粼波, 等. 基于朴素贝叶斯分类的DVC-HEVC快速转码[J]. 太赫兹科学与电子信息学报, 2020, 18(2): 235-240.
HUA L, TANG T, QING S B, et al. DVC-HEVC fast transcoding based on naive bayes classification[J]. Journal of Terahertz Science and Electronic Information Technology, 2020, 18(2): 235-240.
[6] 齐奔, 梁金刚, 张立国, 等. 基于贝叶斯分类器的核电厂事故诊断方法研究[J]. 原子能科学技术, 2022, 56(3): 512-519.
QI B, LIANG J G, ZHANG L G, et al. Research on accident diagnosis method of nuclear power plant based on bayesian classifier[J]. Atomic Energy Science and Technology, 2022, 56(3): 512-519.
[7] 王辉, 李玉亮, 王莉. 完全贝叶斯分类器在经济数据分类中的应用[J]. 东北师大学报(自然科学版), 2019, 51(4): 65-69.
WANG H, LI Y L, WANG L. Application of complete bayesian classifier in economic data classification[J]. Journal of Northeast Normal University(Natural Science Edition), 2019, 51(4): 65-69.
[8] 郑宏. 贝叶斯分类器在汽车发动机喷射故障诊断中的应用研究[D]. 重庆: 重庆大学, 2011.
[9] 张晓莉. 朴素贝叶斯分类器及其改进算法研究[D]. 青岛: 山东科技大学, 2020.
[10] PEARL J. Probabilistic reasoning in intelligent systems: networks of plausible inference[J]. Computer Science Artificial Intelligence, 1988, 70(2): 1022-1027.
[11] 崔世亮, 刘广斌. 基于专家系统的船舶结构优化设计[J]. 船舶物资与市场, 2022(5): 24-26.
[12] 邵伟. 基于鲁棒性的船舶结构优化设计研究[D]. 镇江: 江苏科技大学, 2012.
[13] DAVID W, CAROLYN C S.Bayesian network classifiers for set-based collaborative design[J]. Journal of Mechanical Design, 2012, 134(7): 1-14.