研究深度学习技术在航迹控制系统中的应用,实现航迹智能、精确控制,以适应复杂多变环境和任务需求。利用LOS算法确定船舶航行期望航向角、航迹误差,在融合船舶模型采集的船舶状态信息后,得到航迹跟踪控制的状态变量,将其输入到基于MDP模型的航迹控制器中,将最高长期累积回报作为目标,利用卷积神经网络对控制器训练,学习给定状态到执行动作之间的映射关系,以获得使船舶按照预定航迹行驶的最优舵角动作值,实现航迹精准跟踪控制。实验结果表明,该系统所用控制器经过150回合训练,即可实现航迹数据规律的精准捕捉,具有突出学习能力;干扰工况下,该系统也可使船舶沿期望航迹航行,航迹控制效果显著。
Research the application of deep learning technology in trajectory control systems to achieve intelligent and precise trajectory control, in order to adapt to complex and ever-changing environments and task requirements. Using the LOS algorithm to determine the expected heading angle and trajectory error of ship navigation, after fusing the ship state information collected by the ship model, the state variables of trajectory tracking control are obtained, which are input into the trajectory controller based on the MDP model. The highest long-term cumulative return is set as the target, and the controller is trained using convolutional neural networks to learn the mapping relationship between the given state and the executed action, in order to obtain the optimal rudder angle action value that enables the ship to travel along the predetermined trajectory and achieve precise trajectory tracking control. The experimental results show that the controller used in the system can achieve precise capture of trajectory data patterns after 150 rounds of training, and has outstanding learning ability; Under interference conditions, the system can also enable the ship to navigate along the desired trajectory, and the trajectory control effect is significant.
2024,46(10): 174-177 收稿日期:2023-12-12
DOI:10.3404/j.issn.1672-7649.2024.10.031
分类号:TP273
基金项目:吉林省教育科学“十四五”规划2021年度课题(GH21505)
作者简介:于雷(1987-),男,硕士,讲师,研究方向为计算机软件
参考文献:
[1] 杨忠凯, 仲伟波, 冯友兵, 等. 基于改进的视线导引算法与自抗扰航向控制器的无人艇航迹控制[J]. 中国舰船研究, 2021, 16(1): 121–127+135.
YANG Zhongkai, ZHONG Weibo, FENG Youbing, et al. Unmanned surface vehicle track control based on improved LOS and ADRC[J]. Chinese Journal of Ship Research, 2021, 16(1): 121-127+135.
[2] 刘训文, 徐超, 陈再发. 事件触发的自适应PID海洋水面船舶航迹跟踪控制[J]. 上海海事大学学报, 2023, 44(2): 11-17.
LIU Xunwen, XU Chao, CHEN Zaifa. Event-triggered adaptive PID trajectory tracking control for marine surface vehicles[J]. Journal of Shanghai Maritime University, 2023, 44(2): 11-17.
[3] 李诗杰, 徐诚祺, 刘佳仑, 等. 船舶自抗扰无模型自适应航迹控制[J]. 中国舰船研究, 2024, 19(1): 280-289.
LI Shijie, XU Chengqi, LIU Jialun, et al. Tracking control of ships based on ADRC-MFAC[J]. Chinese Journal of Ship Research, 2024, 19(1): 280-289.
[4] 王潋, 李烨, 陈霄, 等. 基于视线导引策略的无人艇航迹跟踪控制算法[J]. 兵工学报, 2022, 43(S2): 20-25.
WANG Lian, LI Ye, CHEN Xiao, et al. USV trajectory tracking control algorithm of based on the line-of-sight guidance strategy[J]. Acta Armamentarii, 2022, 43(S2): 20-25.
[5] 马天珩, 宁杨阳. 基于非线性模型预测控制的无人船航迹跟踪控制方法[J]. 船舶工程, 2023, 45(2): 123-130+166.
MA Tianheng, NING Yangyang. Trajectory tracking control method of unmanned surface vehicles based on nonlinear model predictive control[J]. Ship Engineering, 2023, 45(2): 123-130+166.