针对船舶模拟电路元件复杂交互,故障信号在大量的正常信号中难以凸显,故障特征提取识别难度较大的问题,提出基于RBF神经网络的船舶模拟电路故障诊断方法。由基于小波包的船舶模拟电路故障特征提取方法,以小波分解重构的方式,捕捉电路频带能量变化特征;使用基于状态转移算法优化RBF神经网络的故障诊断模型,由状态转移算法优化RBF神经网络参数,构建用于诊断电路故障的RBF神经网络模型后,学习所提取故障特征与类型之间关系,诊断新输入的船舶模拟电路输出信号故障类型。实验测试结果显示,此方法在有效捕捉船舶模拟电路故障频带能量变化特征后,对多种船舶模拟电路故障的诊断结果均未出现明显错误。
A fault diagnosis method for ship analog circuits based on RBF neural network is proposed to address the complex interaction of components in ship analog circuits, the difficulty of highlighting fault signals in a large number of normal signals, and the difficulty of extracting and identifying fault features. The fault feature extraction method for ship simulation circuits based on wavelet packets captures the energy variation characteristics of the circuit frequency band through wavelet decomposition and reconstruction; Using state transition algorithm to optimize the fault diagnosis model of RBF neural network, optimizing the parameters of RBF neural network, constructing an RBF neural network model for diagnosing circuit faults, learning the relationship between extracted fault features and types, and diagnosing the new input ship analog circuit output signal fault type. The experimental test results show that after effectively capturing the energy changes in the frequency band of ship analog circuit faults, this method has not shown significant errors in the diagnosis of various ship analog circuit faults.
2024,46(10): 182-185 收稿日期:2023-09-27
DOI:10.3404/j.issn.1672-7649.2024.10.033
分类号:TN710
基金项目:2021年辽宁省教育厅基本科研项目(青年项目)(LJKQZ2021124)
作者简介:霍艳飞(1972-),女,硕士,高级实验师,研究方向为电力控制技术
参考文献:
[1] 朱敏, 许爱强, 许晴, 等. 基于改进多层核超限学习机的模拟电路故障诊断[J]. 兵工学报, 2021, 42(2): 356–369.
ZHU Min, XU Ai-qiang, XU Qing, et al. Fault diagnosis of analog circuits based on improved multilayer kernel extreme learning machine[J]. Acta Armamentarii, 2021, 42(2): 356-369.
[2] 梁志义, 郑伟, 徐庆, 等. 基于近场扫描和相似性度量的电路板故障区域检测[J]. 电子测量与仪器学报, 2023, 37(3): 111-120.
LIANG Zhi-yi, ZHENG Wei, XU Qing, et al. Circuit board fault area detection based on near-field scanning and similarity measure[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(3): 111-120.
[3] 杨东儒, 魏建文, 林雄威, 等. 基于自注意力机制的深度学习模拟电路故障诊断[J]. 仪器仪表学报, 2023, 44(3): 128-136.
YANG Dong-ru, WEI Jian-wen, LIN Xiong-wei, et al. A fault diagnosis algorithm for analog circuits based on self-attention mechanism deep learning[J]. Chinese Journal of Scientific Instrument, 2023, 44(3): 128-136.
[4] CHEN L, KHAN U S, KHATTAK M K, et al. An effective approach based on nonlinear spectrum and improved convolution neural network for analog circuit fault diagnosis[J]. Review of Scientific Instruments, 2023, 94(5): 1-14.
[5] 周海勇, 张晓松, 贺振杰, 等. 船舶液压设备双缸同步液压回路设计[J]. 船舶工程, 2021, 43(3): 72-75.
ZHOU Hai-yong, ZHANG Xiao-song, HE Zhen-jie, et al. Design of double cylinder synchronous hydraulic circuit of marine hydraulic equipment[J]. Ship Engineering, 2021, 43(3): 72-75.
[6] 吴希杰, 周方明. 船舶控制设备用微连接器激光软钎焊电路设计[J]. 船海工程, 2021, 50(1): 64-67.
WU Xi-jie, ZHOU Fang-ming. Design of laser soldering circuit for micro connector of marine control equipment[J]. Ship & Ocean Engineering, 2021, 50(1): 64-67.