利用Abaqus软件,分析了热弹塑性有限元法在对接焊船体矩形板极限强度评估中的应用。首先,基于热弹塑性有限元法,直接获取船体板焊接残余应力与变形。进而采用非线性有限元法,评估了2块不同板厚(9.5 mm、11 mm)对接焊船体矩形板在轴向压缩载荷下的极限强度。研究表明,壳单元与实体单元计算所得温度场、残余应力场、变形结果相近,但前者计算效率显著提高。不同矩形板厚度对矩形板纵向残余应力的分布影响较小,但对其垂向挠度峰值影响较大。不同厚度矩形板通过数值模拟得到的极限强度值与Faulkner简化公式计算值误差分别为4.2%和5.1%,因此数值模拟值与公式计算值较吻合。
The application of the thermal-elastic-plastic finite element method in the evaluation of the ultimate strength of butt-welded rectangular hull plates is analyzed by using ABAQUS software. First, based on the thermal-elastic-plastic finite element method, the residual stress and deformation of the hull plate were obtained directly. Then, the ultimate strength of butt-welded rectangular plates with different thickness (9.5 mm, 11 mm) under axial compressive load was evaluated by nonlinear finite element method. The temperature field, residual stress field, and deformation results obtained from the shell element and solid element calculations are similar, but the calculation efficiency of the former is significantly improved. The thickness of the selected rectangular plate has less effect on the distribution of longitudinal residual stresses in the rectangular plate, but has a greater effect on deflection peak. The error of the numerical simulation value of the ultimate strength of the rectangular plates with different thickness and that of the simplified Faulkner formula are 4.2% and 5.1% respectively, so the numerical simulation value is in good agreement with the formula.
2024,46(11): 23-29 收稿日期:2023-07-27
DOI:10.3404/j.issn.1672-7649.2024.11.005
分类号:U663
基金项目:国家自然科学基金青年项目(52001040);重庆市自然科学基金面上项目(cstc2021jcyj-msxmX0944);重庆市教委科学研究青年项目(KJQN202000712);重庆市教委科学研究重点项目(KJZD-K202300710);内河航运技术湖北省重点实验室开放基金资助项目(NHHY2021004);重庆市研究生科研创新项目(2023S0077)
作者简介:崔虎威(1986-),男,博士,副教授,研究方向为船体结构焊接数值仿真与极限强度
参考文献:
[1] UEDA Y, FUKUDA K, FUKUDA M. Measuring theory of three dimensional residual stresses in long welded joints. ly method and lz method[J]. Transactions of JWRI (Japanese Welding Research Institute), 1983, 12(1): 113-122.
[2] PAIK J K, PEDERSENN P T. Simplified method for predicting ultimate compressive strength of ship panels[J]. International Shipbuilding Progress, 1996, 43(434): 139-157.
[3] CUI W C, WANG D Y. Effects of welding distortions and residual stresses on the ultimate strength of long rectangular plates under uniaxial compression[J]. Marine Structures, 1998, 11(6): 251-269.
[4] HU Y R, SUN J L. An approximate method to generate average stress-strain curve with the effect of residual stresses for rectangular plates under uniaxial compression in ship structures[J]. Marine Structures, 1999, 12(9-10): 585-603.
[5] UEDA Y, YAO T. The influence of complex initial deflection modes on the behaviour and ultimate strength of rectangular plates in compression[J]. Journal of Constructional Steel Research, 1985, 5(4): 265-302.
[6] SOARES C G, GORDO J M. Compressive strength of rectangular plates. under biaxial load and lateral pressure[J]. Thin-Walled Structures, 1996, 24(3): 231-259.
[7] PAIK J K, THAYAMBALLI A K, KIM B J. Ultimate strength and effective width formulations for ship plating subject to combined axial load, edge shear, and lateral pressure[J]. Journal of Ship Research, 2000, 44(3): 247-258.
[8] SADOVSK Z, TEIXEIRA A P, SOARES C G. Degradation of the compressive strength of rectangular plates due to initial deflection[J]. Thin-Walled Structures, 2005, 43(1): 65-82.
[9] PAIK J K, SOHN J M. Effects of welding residual stresses on high tensile steel plate ultimate strength: nonlinear finite element method investigations[J]. Journal of Offshore Mechanics & Arctic Engineering, 2012, 134(2): 021401.
[10] 冯亮, 何京可, 史宏达, 等. 船体板格极限强度数值计算影响因素及敏感分析[J]. 舰船科学技术, 2017, 39(21): 48-53.
FENG Liang, HE Jingke, SHI Hongda, et al. Influence factors and sensitivity analysis of numerical calculation of hull panel ultimate strength[J]. Ship Science and Technology, 2017, 39(21): 48-53.
[11] YAO T, FUJIKUBO M. Buckling and ultimate strength of ship and ship-like floating structures [M]. Butterworth-Heinemann, 2016.
[12] 汪建华, 钟小敏, 上田幸雄, 等. 焊接结构三维热变形的有限元模拟[J]. 上海交通大学学报, 1994, 28(6): 59-65.
[13] MOLLICONE P, CAMILLERI D, GRAY T. Procedural influences on non-linear distortions in welded thin-plate fabrication[J]. Thin-Walled Structures, 2008, 46(7–9): 1021-1034.
[14] RANJBAMODEH E, SERAJZADEH S, KOKABI A H, et al. Finite element modeling of the effect of heat input on residual stresses in dissimilar joints[J]. International Journal of Advanced Manufacturing Technology, 2011, 55(5-8): 649-656.
[15] OKANO S, TANAKA M, MOCHIZUKI M. Arc physics based heat source modelling for numerical simulation of weld residual stress and distortion[J]. Science & Technology of Welding & Joining, 2013, 16(3): 209-214.
[16] SINGH S, YADAIAH N, BAG S, et al. Numerical simulation of welding-induced residual stress in fusion welding process using adaptive volumetric heat source[J]. Proceedings of The Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228(16): 2960-2972.
[17] ATTARHA M J, SATTARI F. Study on welding temperature distribution in thin welded plates through experimental measurements and finite element simulation[J]. Journal of Materials Processing Technology, 2011, 211(4): 688-694.
[18] SUN J, LIU X, TONG Y, et al. A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and co2 gas arc welding[J]. Materials & Design, 2014, 63: 519-530.
[19] CHOOBI M S, HAGHPANAHI M, SEDIGHI M. Investigation of the effect of clamping on residual stresses and distortions in butt-welded plates[J]. Scientia Iranica, 2010, 17(5): 387-394.
[20] CHEN B Q, SOARES C G. Numerical investigation on weld induced imperfections in aluminium ship plates[J]. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141(6): 1-7.
[21] 崔虎威, 樊开敬. 平板对接焊温度场与残余应力数值模拟[J]. 重庆交通大学学报(自然科学版), 2022, 41(9): 140-146.
CUI Huwei, FAN Kaijing. Numerical simulation of temperature field and residual stress in flat plate butt welding[J]. Journal of Chongqing Jiaotong University (Natureal Science), 2022, 41(9): 140-146.
[22] 倪连超, 陈震, 陶国君. EH36钢薄板对接焊接变形数值模拟[J]. 焊接, 2014(2): 56-62+72.
NI Lianchao, CHEN Zhen, TAO Guojun. Numerical simulation of deformation of EH36 steel sheet butt welding[J]. Welding, 2014(2): 56-62+72.
[23] GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical And Materials Transactions B-process Metallurgy And Materials Processing Science, 1984, 15(2): 299-305.
[24] 陈冰泉. 船舶及海洋工程结构焊接[M]. 北京: 人民交通出版社, 2001.