微穿孔—蜂窝结构的吸声性能主要受微孔板厚度、微孔直径、穿孔率、微孔形状、背后空腔、蜂窝形状、蜂窝芯层高度、蜂窝蜂房边长和壁厚等参数的影响。本文以共振频率、吸声系数峰值、平均吸声系数和理论吸声带宽等指标作为衡量标准来判断这些参数对微穿孔—蜂窝结构吸声性能的影响。同时建立了有限元模型对分析结果进行了验证,并通过设计不同参数的正交试验分析了各因素之间的相互影响以及主次关系。
The sound absorption performance of the microperforated -honeycomb structure is mainly restricted by such parameters as the thickness, diameter, perforation rate, shape and cavity at the back of the microporous plate, and shape, core height, cell side length and wall thickness of the honeycomb structures. Based on the perspectives of resonance frequency, peak value of sound absorption coefficient, average sound absorption coefficient and theoretical sound absorption bandwidth, the influence of these parameters on the sound absorption performance of microperforated honeycomb structure was investigated. Subsequently, a finite element model was developed to validate the proposed analytical model. The mutual influence and primary and secondary relationship among the factors were studied via orthogonal test.
2024,46(11): 63-69 收稿日期:2023-09-19
DOI:10.3404/j.issn.1672-7649.2024.11.012
分类号:TN912
作者简介:张磊(1998-)男,硕士,研究方向为船舶噪声与振动控制
参考文献:
[1] 马大猷. 微穿孔板吸声结构的理论和设计[J]. 中国科学, 1975(1): 38-50.
[2] SAKAGAMI K, NAKAJIMA K, MORIMOTO M, et al. Sound absorption characteristics of a honeycomb-backed microperforated panel (MPP) absorber[J]. Acoustical Society of America Journal, 2006, 120(5): 3146–3150.
[3] SAKAGAMI K, YAMASHITA I, YAIRI M, et al. Sound absorption characteristics of a honeycomb-backed microperforated panel absorber: Revised theory and experimental validation[J]. Noise Control Engineering Journal, 2010, 58(2): 157-162.
[4] RAN Z, CROCKER M J. Sound transmission loss of foam-filled honeycomb sandwich panels using statistical energy analysis and theoretical and measured dynamic properties[J]. Journal of Sound & Vibration, 2010, 329(6): 673-686.
[5] ENDO M, KIM Y S. Study on direct sound reduction structure for reducing noise generated by vibrating solids[J]. Journal of Sound & Vibration, 2013, 332(11): 2643-2658.
[6] 任树伟, 辛锋先, 卢天健. 蜂窝层芯夹层板结构振动与传声特性研究[J]. 力学学报, 2013, 45(3): 349-358.
[7] XIN F, LU T J. A nonlinear acoustomechanical field theory of polymeric gels[J]. International Journal of Solids & Structures, 2017, 112: 133-142.
[8] 任树伟, 孟晗, 辛锋先, 等. 方形蜂窝夹层曲板的振动特性研究[J]. 西安交通大学学报, 2015, 49(3): 129-135.
[9] XIN F X, LU T J. Analytical modeling of fluid loaded orthogonally rib-stiffened sandwich structures: Sound transmission[J]. Journal of the Mechanics & Physics of Solids, 2010, 58(9): 1374-1396.
[10] XIN F X, LU T J. Sound radiation of orthogonally rib-stiffened sandwich structures with cavity absorption[J]. Composites science and technology, 2010, 70(15): 2198-2206.
[11] 辛锋先, 卢天健, 陈常青. 金属正交加筋三明治板的波动特性研究[C]//中国力学学会, 郑州大学. 中国力学学会学术大会, 2009论文摘要集. 2009: 201–202.
[12] HERKES W, NESBITT E, CALLENDER B, et al. The quiet technology demonstrator program: static test of airplane noise-reduction concepts[C]// Aiaa/ceas Aeroacoustics Conference, 2006.
[13] 张德满, 李舜酩, 尚伟燕. 工程机械机外噪声声源分析及降噪处理[J]. 振动. 测试与诊断, 2011, 31(3): 362-365+399.
[14] JIA Y, NESBITT E, UELLENBERG H, et al. Quiet technology demonstrator 2 intake liner design and validation[J]. Aiaa Journal, 2013, 251(5): 2006–2458.
[15] TOYODA M, SAKAGAMI K, TAKAHASHI D, et al. Effect of a honeycomb on the sound absorption characteristics of panel-type absorbers[J]. Applied Acoustics, 2011, 72(12): 943-948.
[16] XIE S, WANG D, FENG Z, et al. Sound absorption performance of microperforated honeycomb metasurface panels with a combination of multiple orifice diameters[J]. Applied Acoustics, 2020, 158: 107046.1-107046.9.
[17] PENG X, JI J, JING Y. Composite honeycomb metasurface panel for broadband sound absorption[J]. The Journal of the Acoustical Society of America, 2018, 144(4): EL255-EL261.
[18] JONZA J M, THOMAS H, JEFFREY K, et al. Acoustically Absorbing Lightweight Thermoplastic Honeycomb Panels[C]// Inter-noise & Noise-con Congress & Conference, 2017: 445–454.
[19] WANG X, LU T J. Optimized acoustic properties of cellular solids[J]. The Journal of the Acoustical Society of America, 1999, 106(2): 56-765.
[20] YANG Y, LI B, CHEN Z, et al. Acoustic properties of glass fiber assembly-filled honeycomb sandwich panels[J]. Composites Part B Engineering, 2016, 96: 281-286.
[21] MENG H, GALLAND M A, ICHCHOU M, et al. On the low frequency acoustic properties of novel multifunctional honeycomb sandwich panels with micro-perforated faceplates[J]. Applied Acoustics, 2019, 152: 31-40.