为提高在特定条件下的航行速度,以“先锋Ⅲ号”波浪滑翔器为研究对象,在水下牵引机尾部增加螺旋桨推进器以获得辅助推进动力。首先,介绍整体的结构组成和辅助推进系统的工作原理;其次,建立水下牵引机和螺旋桨推进器的数值模型,利用CFD分析水翼在不同攻角和螺旋桨启、闭时对推力和航速的影响;最后,开展静水池和海上航行试验,将仿真结果与试验数据进行对比分析。结果表明,静水航行时,水翼在0°攻角且螺旋桨转速为288 r/min,仿真预报航速为0.47 m/s,总推力4.88 kgf,与水池试验测得航速0.4 m/s接近;3级海况时,水翼在5°、10°攻角仿真,启动螺旋桨,航速分别提高0.37 m/s和0.24 m/s,与海上试验平均0.34 m/s的航速增量数据接近。验证了数值模型的可靠性,可为波浪滑翔器辅助推进技术的深入发展提供参考。
In order to improve the navigation speed under specific conditions, the "Pioneer III" wave glider was taken as the research object, and a propeller propeller was added to the tail of the underwater tractor to obtain auxiliary propulsion power. Firstly, the overall structural composition and the working principle of the auxiliary propulsion system were introduced. Next, establish numerical models of underwater tractor and propeller thruster, and use CFD to analyze the influence of hydrofoil on thrust and speed at different angles of attack and when the propeller is open and closed. Finally, conduct static water tank and sea navigation tests, and compare and analyze the simulation results with experimental data. The results show that during still water navigation, the hydrofoil is at a 0° angle of attack and the propeller speed is 288 r/min. The simulated predicted speed is 0.47 m/s, and the total thrust is 4.88 kgf, which is close to the speed measured in the pool test of 0.4 m/s. At the third level sea state, the hydrofoil is simulated at 5° and 10° attack angles, and the propeller is activated, resulting in an increase in speed of 0.37 m/s and 0.24 m/s, respectively, which is close to the average speed increment data of 0.34 m/s in sea trials. The reliability of the numerical model has been verified, which can provide reference for the in-depth development of wave glider assisted propulsion technology.
2024,46(11): 85-91 收稿日期:2023-08-08
DOI:10.3404/j.issn.1672-7649.2024.11.016
分类号:U674.941;TH122
基金项目:宁波市关键核心技术应急攻关项目(2020G016)
作者简介:黄毫军(1990-),男,硕士,工程师,研究方向为水下无人平台总体设计及应用
参考文献:
[1] DANIEL T, MANLEY J, TRENAMAN N. The wave glider: enabling a new approach to persistent ocean observation and research[J]. Ocean Dynamics, 2011, 61(10): 1509-1520.
[2] GOEBEL N L, FROLOV, EDWARDS C A. Complementary use of wave glider and satellite measurements: description of spatial decorrelation scales in chla fluorescence across the pacific basin[J]. Methods in Oceanography, 2014(10): 90-103.
[3] 刘芬, 张进, 桑宏强, 等. 基于平行四连杆的水下牵引机下限位随动机构设计与仿真分析[J]. 机械传动, 2023, 47(1): 69-76.
LIU Fen, ZHANG Jin, SANG Hongqiang, et al. Design and simulation analysis of lower limit follow-up mechanism of submerged glider based on the parallel four-bar Linkage[J]. Journal of Mechanical Transmission, 2023, 47(1): 69-76.
[4] THAWEEWAT N, PHOEMSAPTHAWEE S, JUNTASARO V. Semi-active flapping foil for marine propulsion[J]. Ocean Engineering, 2018, 147: 556-564.
[5] YANG F, SHI W, WANG D. Systematic study on propulsive performance of tandem hydrofoils for a wave glider[J]. Ocean Engineering, 2019, 179: 361-370.
[6] 王兵振, 周茜子, 刘政, 等. 波浪滑翔机椭圆形后缘水翼动力特性研究[J]. 海洋技术学报, 2021, 40(3): 67-74.
WANG Bingzhen, ZHOU Qianzi, LIU Zheng, et al. Research on dynamic characteristics of elliptical trailing edge hydrofoil of wave glider[J]. Journal of Ocean Technology, 2021, 40(3): 67-74.
[7] 胡峰, 赵文涛, 黄琰, 等. 三维被动摆动水翼对波浪滑翔机推进动力的性能研究[J]. 机械工程学报, 2020, 56(8): 243-249.
HU Feng, ZHAO Wentao, HUANG Yan, et al. Study on propulsion performance of three-dimensional passive oscillating hydrofoil on wave glider[J]. Journal of Mechanical Engineering, 2020, 56(8): 243-249.
[8] 秦玉峰, 张选明, 孙秀军, 等. 混合驱动水下滑翔机高效推进螺旋桨设计[J]. 海洋技术学报, 2016, 35(3): 40-45.
QIN Yufeng, ZHANG Xuanming, SUN Xiujun, et al. Design of high efficiency propulsion propeller for hybrid driven underwater glider[J]. Journal of Ocean Technology, 2016, 35(3): 40-45.
[9] LAURENT G, NICHOLAS M, NICK P, et al. Instrumented wave gliders for air-sea interaction and upper ocean research[J]. Frontiers in Marine Science, 2021(8): 664728.
[10] 毕杰. 可折叠螺旋桨式混合驱动水下滑翔机设计与性能研究[D]. 青岛: 青岛科技大学, 2021.
[11] 张强, 吴家鸣, 张天, 等. 三维回转运动条件下水下潜器系统导管螺旋桨推力特性研究[J]. 舰船科学技术, 2022, 44(2): 104-110.
ZHANG Qiang, WU Jiaming, ZHANG Tian, et al. Research on thrust characteristic of ducted propellers in underwater vehicle system with a 3D rotary motion[J]. Ship Science and Technology, 2022, 44(2): 104-110.
[12] 朱芳艳. 船模自航试验的数值模拟[D]. 武汉: 武汉理工大学, 2013.
[13] 杨琴, 王国栋, 张志国, 等. 基于CFD的潜艇模型自航仿真分析[J]. 中国舰船研究, 2013, 8(2): 22-27.
YANG Qin, WANG Guodong, ZHANG Zhiguo, et al. Numerical simulation of the submarine self-propulsion model based on CFD technology[J]. Chinese Journal of Ship Research, 2013, 8(2): 22-27.
[14] 李小涛. 波浪滑翔器动力学建模及其仿真研究[D]. 北京: 中国舰船研究院, 2014.
[15] 王海军. 波浪滑翔机海上试验研究[J]. 数字海洋与水下攻防, 2020, 3(2): 129-134.
WANG Haijun. Research on sea trial for wave glider[J]. Digital Ocean & Underwater Warfare, 2020, 3(2): 129-134.